-
- Monica L Wagner, Allison Ammann, Giovanna Piraino, Vivian Wolfe, Michael O'Connor, Patrick Lahni, Assem Ziady, and Basilia Zingarelli.
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Ohio, USA.
- Shock. 2023 Jul 1; 60 (1): 647464-74.
AbstractIntroduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.Copyright © 2023 by the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.