-
- Sharven Taghavi, Sarah Abdullah, Farhana Shaheen, Jacob Packer, Juan Duchesne, Stephen E Braun, Chad Steele, Derek Pociask, Jay K Kolls, and Olan Jackson-Weaver.
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana.
- Shock. 2023 Jul 1; 60 (1): 566356-63.
AbstractIntroduction: Endothelial glycocalyx damage occurs in numerous pathological conditions and results in endotheliopathy. Extracellular vesicles, including exosomes and microvesicles, isolated from adipose-derived mesenchymal stem cells (ASCs) have therapeutic potential in multiple disease states; however, their role in preventing glycocalyx shedding has not been defined. We hypothesized that ASC-derived exosomes and microvesicles would protect the endothelial glycocalyx from damage by LPS injury in cultured endothelial cells. Methods : Exosomes and microvesicles were collected from ASC conditioned media by centrifugation (10,000 g for microvesicles, 100,000 g for exosomes). Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). LPS-injured cells (n = 578) were compared with HUVECS with concomitant LPS injury plus 1.0 μg/mL of exosomes (n = 540) or microvesicles (n = 510) for 24 hours. These two cohorts were compared with control HUVECs that received phosphate-buffered saline only (n = 786) and HUVECs exposed to exosomes (n = 505) or microvesicles (n = 500) alone. Cells were fixed and stained with FITC-labeled wheat germ agglutinin to quantify EGX. Real-time quantitative reverse-transcription polymerase chain reaction was used on HUVECs cell lystate to quantify hyaluron synthase-1 (HAS1) expression. Results: Exosomes alone decreased endothelial glycocalyx staining intensity when compared with control (4.94 vs. 6.41 AU, P < 0.001), while microvesicles did not cause a change glycocalyx staining intensity (6.39 vs. 6.41, P = 0.99). LPS injury resulted in decreased glycocalyx intensity as compared with control (5.60 vs. 6.41, P < 0.001). Exosomes (6.85 vs. 5.60, P < 0.001) and microvesicles (6.35 vs. 5.60, P < 0.001) preserved endothelial glycocalyx staining intensity after LPS injury. HAS1 levels were found to be higher in the exosome (1.14 vs. 3.67 RE, P = 0.02) and microvesicle groups (1.14 vs. 3.59 RE, P = 0.02) when compared with LPS injury. Hyaluron synthase-2 and synthase-3 expressions were not different in the various experimental groups. Conclusions: Exosomes alone can damage the endothelial glycocalyx. However, in the presence of LPS injury, both exosomes and microvesicles protect the glycocalyx layer. This effect seems to be mediated by HAS1. Level of Evidence : Basic science study.Copyright © 2023 by the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.