• Spine · Aug 2023

    Biodegradable Microspheres and Hydrogel Drug Delivery System of Tumor Necrosis Factor (TNF) Inhibitor and Growth Differentiation Factor 5 (GDF5) Reduces Disc Inflammation in the Rabbit Model.

    • Bo Yuan, Kayla Rudeen, Jun Li, Brandon Williams, Saurav Sumughan, Gregory Lopez, Howard S An, Jennifer J Kang-Mieler, and Ana V Chee.
    • Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL.
    • Spine. 2023 Aug 1; 48 (15): E257E265E257-E265.

    Study DesignPreclinical study.ObjectiveDevelop and test a drug delivery system (DDS) composed of anti-inflammatories and growth factors in the rabbit disk injury model.Summary Of Background DataBiological therapies that inhibit inflammation or enhance cell proliferation can alter intervertebral disk (IVD) homeostasis to favor regeneration. As biological molecules have short half-lives and one molecule may not cover multiple disease pathways, effective treatments may require a combination of growth factors and anti-inflammatory agents delivered in a sustained manner.Materials And MethodsBiodegradable microspheres were generated separately to encapsulate tumor necrosis factor alpha (TNFα) inhibitors [etanercept (ETN)] or growth differentiation factor 5 (GDF5) and were embedded into a thermoresponsive hydrogel. Release kinetics and activity of ETN and GDF5 were measured in vitro . For in vivo testing, New Zealand White rabbits (n=12) underwent surgery for disk puncture and treatment with blank-DDS, ETN-DDS, or ETN+GDF5-DDS at levels L34, L45, and L56. Radiographic and magnetic resonance images of the spines were obtained. The IVDs were isolated for histologic and gene expression analyses.ResultsETN and GDF5 were encapsulated into poly (L-lactide-co-glycolide) microspheres and had average initial bursts of 2.4±0.1 and 11.2±0.7 μg from DDS, respectively. In vitro studies confirmed that ETN-DDS inhibited TNFα-induced cytokine release and GDF5-DDS induced protein phosphorylation. In vivo studies showed that rabbit IVDs treated with ETN+GDF5-DDS had better histologic outcomes, higher levels of extracellular, and lower levels of inflammatory gene expression than IVDs treated with blank-DDS or ETN-DDS.ConclusionsThis pilot study demonstrated that DDS can be fabricated to deliver sustained and therapeutic dosages of ETN and GDF5. In addition, ETN+GDF5-DDS may have greater anti-inflammatory and regenerative effects than ETN-DDS alone. Thus, intradiscal injection of controlled release TNF-α inhibitors and growth factors may be a promising treatment to reduce disk inflammation and back pain.Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.