• Medicina · Apr 2023

    Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy.

    • Tiago Ribeiro, Miguel José Mascarenhas Saraiva, João Afonso, Pedro Cardoso, Francisco Mendes, Miguel Martins, Ana Patrícia Andrade, Hélder Cardoso, Miguel Mascarenhas Saraiva, João Ferreira, and Guilherme Macedo.
    • Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal.
    • Medicina (Kaunas). 2023 Apr 21; 59 (4).

    AbstractBackground and objectives: Capsule endoscopy (CE) is a non-invasive method to inspect the small bowel that, like other enteroscopy methods, requires adequate small-bowel cleansing to obtain conclusive results. Artificial intelligence (AI) algorithms have been seen to offer important benefits in the field of medical imaging over recent years, particularly through the adaptation of convolutional neural networks (CNNs) to achieve more efficient image analysis. Here, we aimed to develop a deep learning model that uses a CNN to automatically classify the quality of intestinal preparation in CE. Methods: A CNN was designed based on 12,950 CE images obtained at two clinical centers in Porto (Portugal). The quality of the intestinal preparation was classified for each image as: excellent, ≥90% of the image surface with visible mucosa; satisfactory, 50-90% of the mucosa visible; and unsatisfactory, <50% of the mucosa visible. The total set of images was divided in an 80:20 ratio to establish training and validation datasets, respectively. The CNN prediction was compared with the classification established by consensus of a group of three experts in CE, currently considered the gold standard to evaluate cleanliness. Subsequently, how the CNN performed in diagnostic terms was evaluated using an independent validation dataset. Results: Among the images obtained, 3633 were designated as unsatisfactory preparation, 6005 satisfactory preparation, and 3312 with excellent preparation. When differentiating the classes of small-bowel preparation, the algorithm developed here achieved an overall accuracy of 92.1%, with a sensitivity of 88.4%, a specificity of 93.6%, a positive predictive value of 88.5%, and a negative predictive value of 93.4%. The area under the curve for the detection of excellent, satisfactory, and unsatisfactory classes was 0.98, 0.95, and 0.99, respectively. Conclusions: A CNN-based tool was developed to automatically classify small-bowel preparation for CE, and it was seen to accurately classify intestinal preparation for CE. The development of such a system could enhance the reproducibility of the scales used for such purposes.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…