• Peptides · Dec 2011

    Corticotropin-releasing factor (CRF) receptor subtypes in mediating neuronal activation of brain areas involved in responses to intracerebroventricular CRF and stress in rats.

    • Chiaki Takahashi, Hisayuki Ohata, and Tamotsu Shibasaki.
    • Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan. tsumoc@nms.ac.jp
    • Peptides. 2011 Dec 1;32(12):2384-93.

    AbstractCorticotropin-releasing factor (CRF) plays an important role in stress responses through activation of its receptor subtypes, CRF1 receptor (CRF(1)) and CRF2 receptor (CRF(2)). The parvocellular paraventricular nucleus of the hypothalamus (PVNp), the central nucleus of the amygdala (CeA), and the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), which are rich in CRF neurons with equivocal expression of CRF(1) and CRF(2), are involved in stress-related responses. In these areas, Fos expression is induced by various stimuli, although the functions of CRF receptor subtypes in stimuli-induced Fos expression are unknown. To elucidate this issue and to examine whether Fos is expressed in CRF or non-CRF neurons in these areas, the effects of antalarmin and antisauvagine-30 (AS-30), CRF(1)- and CRF(2)-specific antagonists, respectively, on intracerebroventricular (ICV) CRF- or 60min-restraint-induced Fos expression were examined in rats. ICV CRF increased the number of Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in CRF and non-CRF neurons and by AS-30 in CRF neurons. Restraint also increased Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in the CRF neurons. ICV CRF also increased Fos-positive non-CRF neurons in the CeA and the BNSTov, which was inhibited by AS-30 in both areas, and inhibited by antalarmin in the BNSTov only. Restraint increased Fos-positive non-CRF neurons in the CeA and BNSTov, with the increases being almost completely inhibited by either antagonist. These results indicate that both ICV CRF and restraint activate both CRF and non-CRF neurons in the PVNp and non-CRF neurons in the CeA and BNSTov, and that the activation is mediated by CRF(1) and/or CRF(2). However, the manner of involvement for CRF(1) and CRF(2) in ICV CRF- and restraint-induced activation of neurons differs with respect to the stimuli and brain areas; being roughly equivalent in the CeA and BNSTov, but different in the PVNp. Furthermore, the non-CRF(1&2)-mediated signals seem to primarily play a role in restraint-induced activation of non-CRF neurons in the PVNp since the activation was not inhibited by CRF receptor antagonists.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…