• Shock · Jul 2023

    ATM protects against lipopolysaccaride-induced blood-brain barrier disruption by regulating ATK/DRP1-mediated mitochondrial homeostasis.

    • Shiyuan Luo, Zhuochen Lyu, Lingling Ge, Yinjiao Li, Yuqi Liu, Yuan Yuan, Rui Zhao, Lei Huang, Jianyuan Zhao, Hongjun Huang, and Yan Luo.
    • Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
    • Shock. 2023 Jul 1; 60 (1): 100109100-109.

    AbstractBackground: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. Methods: We used LPS to induce BBB disruption in vivo and to establish an in vitro model of cerebrovascular endothelial cells. Blood-brain barrier disruption was assessed by measuring Evans blue leakage and expression of vascular permeability regulators. To investigate the role of ATM, its inhibitor AZD1390 and clinically approved doxorubicin, an anthracycline that can activate ATM, were administered as scheduled. To explore the underlying mechanism, protein kinase B (AKT) inhibitor MK-2206 was administered to block the AKT/dynamin-related protein 1 (DRP1) pathway. Results: Lipopolysaccharide challenge induced significant BBB disruption, ATM activation, and mitochondrial translocation. Inhibiting ATM with AZD1390 aggravated BBB permeability as well as the following neuroinflammation and neuronal injury, while activation of ATM by doxorubicin abrogated these defects. Further results obtained in brain microvascular endothelial cells showed that ATM inhibition reduced the phosphorylation of DRP1 at serine (S) 637, promoted excessive mitochondrial fission, and resulted in mitochondrial malfunction. By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…