• J Pain · Sep 2023

    Opioids induce bidirectional synaptic plasticity in a brainstem pain centre in the rat.

    • Valeria Mussetto, Hannah Luise Teuchmann, Bernhard Heinke, Lidia Trofimova, Jürgen Sandkühler, Ruth Drdla-Schutting, and Roni Hogri.
    • Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
    • J Pain. 2023 Sep 1; 24 (9): 166416801664-1680.

    AbstractOpioids are powerful analgesics commonly used in pain management. However, opioids can induce complex neuroadaptations, including synaptic plasticity, that ultimately drive severe side effects, such as pain hypersensitivity and strong aversion during prolonged administration or upon drug withdrawal, even following a single, brief administration. The lateral parabrachial nucleus (LPBN) in the brainstem plays a key role in pain and emotional processing; yet, the effects of opioids on synaptic plasticity in this area remain unexplored. Using patch-clamp recordings in acute brainstem slices from male and female Sprague Dawley rats, we demonstrate a concentration-dependent, bimodal effect of opioids on excitatory synaptic transmission in the LPBN. While a lower concentration of DAMGO (0.5 µM) induced a long-term depression of synaptic strength (low-DAMGO LTD), abrupt termination of a higher concentration (10 µM) induced a long-term potentiation (high-DAMGO LTP) in a subpopulation of cells. LTD involved a metabotropic glutamate receptor (mGluR)-dependent mechanism; in contrast, LTP required astrocytes and N-methyl-D-aspartate receptor (NMDAR) activation. Selective optogenetic activation of spinal and periaqueductal gray matter (PAG) inputs to the LPBN revealed that, while LTD was expressed at all parabrachial synapses tested, LTP was restricted to spino-parabrachial synapses. Thus, we uncovered previously unknown forms of opioid-induced long-term plasticity in the parabrachial nucleus that potentially modulate some adverse effects of opioids. PERSPECTIVE: We found a previously unrecognized site of opioid-induced plasticity in the lateral parabrachial nucleus, a key region for pain and emotional processing. Unraveling opioid-induced adaptations in parabrachial function might facilitate the identification of new therapeutic measures for addressing adverse effects of opioid discontinuation such as hyperalgesia and aversion.Copyright © 2023 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.