-
Multicenter Study Clinical Trial Observational Study
A prospective observational multicentric clinical trial to evaluate microscopic examination of acid-fast bacilli in sputum by artificial intelligence-based microscopy system.
- Prashant Gupta, Vineeta Khare, Anand Srivastava, Jyotsna Agarwal, Vineeta Mittal, Vijay Sonkar, Shelly Saxena, Ankit Agarwal, and Amita Jain.
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India.
- J. Investig. Med. 2023 Oct 1; 71 (7): 716721716-721.
AbstractMicroscopy-based tuberculosis (TB) diagnosis i.e., Ziehl-Neelsen (ZN) stained smear screening still remains the primary diagnostic method in resource poor and high TB burden countries, however itrequires considerable experience and is bound to human errors. In remote areas, wherever expert microscopist is not available, timely diagnosis at initial level is not possible. Artificial intelligence (AI)-based microscopy may be a solution to this problem. A prospective observational multi-centric clinical trial to evaluate microscopic examination of acid-fast bacilli (AFB) in sputum by the AI based system was done in three hospitals in Northern India. Sputum samples from 400 clinically suspected cases of pulmonary tuberculosis were collected from three centres. Ziehl-Neelsen staining of smears was done. All the smears were observed by 3 microscopist and the AI based microscopy system. AI based microscopy was found to have a sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of 89.25%, 92.15%, 75.45%, 96.94%, 91.53% respectively. AI based sputum microscopy has an acceptable degree of accuracy, PPV, NPV, specificity and sensitivity and thus may be used as a screening tool for the diagnosis of pulmonary tuberculosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.