-
- Neslihan Ozcelik, Ali Erdem Ozcelik, Nese Merve Guner Zirih, Inci Selimoglu, and Aziz Gumus.
- Recep Tayyip Erdogan University, Faculty of Medicine, Training and Research Hospital, Chest Disease, Rize, Turkey. Electronic address: neslihan.ozcelik@erdogan.edu.tr.
- Clinics (Sao Paulo). 2023 Jan 1; 78: 100210100210.
BackgroundThe pleura is a serous membrane that surrounds the lungs. The visceral surface secretes fluid into the serous cavity and the parietal surface ensures a regular absorption of this fluid. If this balance is disturbed, fluid accumulation occurs in the pleural space called "Pleural Effusion". Today, accurate diagnosis of pleural diseases is becoming more critical, as advances in treatment protocols have contributed positively to prognosis. Our aim is to perform computer-aided numerical analysis of Computed Tomography (CT) images from patients showing pleural effusion images on CT and to examine the prediction of malignant/benign distinction using deep learning by comparing with the cytology results.MethodsThe authors classified 408 CT images from 64 patients whose etiology of pleural effusion was investigated using the deep learning method. 378 of the images were used for the training of the system; 15 malignant and 15 benign CT images, which were not included in the training group, were used as the test.ResultsAmong the 30 test images evaluated in the system; 14 of 15 malignant patients and 13 of 15 benign patients were estimated with correct diagnosis (PPD: 93.3%, NPD: 86.67%, Sensitivity: 87.5%, Specificity: 92.86%).ConclusionAdvances in computer-aided diagnostic analysis of CT images and obtaining a pre-diagnosis of pleural fluid may reduce the need for interventional procedures by guiding physicians about which patients may have malignancies. Thus, it is cost and time-saving in patient management, allowing earlier diagnosis and treatment.Copyright © 2023 HCFMUSP. Published by Elsevier España, S.L.U. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.