• Mol Pain · Jan 2008

    Expression of AMPA receptor subunits at synapses in laminae I-III of the rodent spinal dorsal horn.

    • Erika Polgár, Masahiko Watanabe, Bettina Hartmann, Seth Gn Grant, and Andrew J Todd.
    • Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. e.polgar@bio.gla.ac.uk
    • Mol Pain. 2008 Jan 23; 4: 55.

    BackgroundGlutamate receptors of the AMPA type (AMPArs) mediate fast excitatory transmission in the dorsal horn and are thought to underlie perception of both acute and chronic pain. They are tetrameric structures made up from 4 subunits (GluR1-4), and subunit composition determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the receptors with immunocytochemistry, and in this study we have investigated the subunit composition at synapses within laminae I-III of the dorsal horn. In addition, we have compared staining of AMPArs with that for PSD-95, a major constituent of glutamatergic synapses. We also examined tissue from knock-out mice to confirm the validity of the immunostaining.ResultsAs we have shown previously, virtually all AMPAr-immunoreactive puncta were immunostained for GluR2. In laminae I-II, approximately 65% were GluR1-positive and approximately 60% were GluR3-positive, while in lamina III the corresponding values were 34% (GluR1) and 80% (GluR3). Puncta stained with antibody against the C-terminus of GluR4 (which only detects the long form of this subunit) made up 23% of the AMPAr-containing puncta in lamina I, approximately 8% of those in lamina II and 46% of those in lamina III. Some overlap between GluR1 and GluR3 was seen in each region, but in lamina I GluR1 and GluR4 were present in largely non-overlapping populations. The GluR4 puncta often appeared to outline dendrites of individual neurons in the superficial laminae. Virtually all of the AMPAr-positive puncta were immunostained for PSD-95, and 98% of PSD-95 puncta contained AMPAr-immunoreactivity. Staining for GluR1, GluR2 and GluR3 was absent in sections from mice in which these subunits had been knocked out, while the punctate staining for PSD-95 was absent in mice with a mutation that prevents accumulation of PSD-95 at synapses.ConclusionOur results suggest that virtually all glutamatergic synapses in laminae I-III of adult rat spinal cord contain AMPArs. They show that synapses in laminae I-II contain GluR2 together with GluR1 and/or GluR3, while the long form of GluR4 is restricted to specific neuronal populations, which may include some lamina I projection cells. They also provide further evidence that immunostaining for AMPAr subunits following antigen retrieval is a reliable method for detecting these receptors at glutamatergic synapses.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.