• Anesthesia and analgesia · Jul 2023

    Randomized Controlled Trial

    Sleep Fragmentation, Electroencephalographic Slowing, and Circadian Disarray in a Mouse Model for Intensive Care Unit Delirium.

    • Elzbieta Dulko, Michal Jedrusiak, Hari P Osuru, Navya Atluri, Meghana Illendula, Eric M Davis, Mark P Beenhakker, and Nadia Lunardi.
    • From the Departments of Anesthesiology.
    • Anesth. Analg. 2023 Jul 1; 137 (1): 209220209-220.

    BackgroundWe aimed to further validate our previously published animal model for delirium by testing the hypothesis that in aged mice, Anesthesia, Surgery and simulated ICU conditions (ASI) induce sleep fragmentation, electroencephalographic (EEG) slowing, and circadian disarray consistent with intensive care unit (ICU) patients with delirium.MethodsA total of 41 mice were used. Mice were implanted with EEG electrodes and randomized to ASI or control groups. ASI mice received laparotomy, anesthesia, and simulated ICU conditions. Controls did not receive ASI. Sleep was recorded at the end of ICU conditions, and hippocampal tissue was collected on EEG recording. Arousals, EEG dynamics, and circadian gene expression were compared with t tests. Two-way repeated measures analysis of variance (RM ANOVA) was used to assess sleep according to light.ResultsASI mice experienced frequent arousals (36.6 ± 3.2 vs 26.5 ± 3.4; P = .044; 95% confidence interval [CI], 0.29-19.79; difference in mean ± SEM, 10.04 ± 4.62) and EEG slowing (frontal theta ratio, 0.223 ± 0.010 vs 0.272 ± 0.019; P = .026; 95% CI, -0.091 to -0.007; difference in mean ± SEM, -0.05 ± 0.02) relative to controls. In ASI mice with low theta ratio, EEG slowing was associated with a higher percentage of quiet wakefulness (38.2 ± 3.6 vs 13.4 ± 3.8; P = .0002; 95% CI, -35.87 to -13.84; difference in mean ± SEM, -24.86 ± 5.19). ASI mice slept longer during the dark phases of the circadian cycle (nonrapid eye movement [NREM], dark phase 1 [D1]: 138.9 ± 8.1 minutes vs 79.6 ± 9.6 minutes, P = .0003, 95% CI, -95.87 to -22.69, predicted mean difference ± SE: -59.28 ± 13.89; NREM, dark phase 2 (D2): 159.3 ± 7.3 minutes vs 112.6 ± 15.5 minutes, P = .006, 95% CI, -83.25 to -10.07, mean difference ± SE, -46.66 ± 13.89; rapid eye movement (REM), D1: 20.5 ± 2.1 minutes vs 5.8 ± 0.8 minutes, P = .001, 95% CI, -24.60 to -4.71, mean difference ± SE, -14. 65 ± 3.77; REM, D2: 21.0 ± 2.2 minutes vs 10.3 ± 1.4 minutes, P = .029, 95% CI, -20.64 to -0.76, mean difference ± SE, -10.70 ± 3.77). The expression of essential circadian genes was also lower in ASI mice (basic helix-loop-helix ARNT like [BMAL1] : -1.3 fold change; circadian locomotor output cycles protein kaput [CLOCK] : -1.2).ConclusionsASI mice experienced EEG and circadian changes mimicking those of delirious ICU patients. These findings support further exploration of this mouse approach to characterize the neurobiology of delirium.Copyright © 2023 International Anesthesia Research Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.