• Cochrane Db Syst Rev · Apr 2023

    Review

    Angiogenesis inhibitors for the treatment of epithelial ovarian cancer.

    • Kezia Gaitskell, Ewelina Rogozińska, Sarah Platt, Yifan Chen, Mohamed Abd El Aziz, Abigail Tattersall, and Jo Morrison.
    • Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
    • Cochrane Db Syst Rev. 2023 Apr 18; 4 (4): CD007930CD007930.

    BackgroundMany women, and other females, with epithelial ovarian cancer (EOC) develop resistance to conventional chemotherapy drugs. Drugs that inhibit angiogenesis (development of new blood vessels), essential for tumour growth, control cancer growth by denying blood supply to tumour nodules.ObjectivesTo compare the effectiveness and toxicities of angiogenesis inhibitors for treatment of epithelial ovarian cancer (EOC).Search MethodsWe identified randomised controlled trials (RCTs) by searching CENTRAL, MEDLINE and Embase (from 1990 to 30 September 2022). We searched clinical trials registers and contacted investigators of completed and ongoing trials for further information.Selection CriteriaRCTs comparing angiogenesis inhibitors with standard chemotherapy, other types of anti-cancer treatment, other angiogenesis inhibitors with or without other treatments, or placebo/no treatment in a maintenance setting, in women with EOC.  DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Our outcomes were overall survival (OS), progression-free survival (PFS), quality of life (QoL), adverse events (grade 3 and above) and hypertension (grade 2 and above).Main ResultsWe identified 50 studies (14,836 participants) for inclusion (including five studies from the previous version of this review): 13 solely in females with newly-diagnosed EOC and 37 in females with recurrent EOC (nine studies in platinum-sensitive EOC; 19 in platinum-resistant EOC; nine with studies with mixed or unclear platinum sensitivity). The main results are presented below.  Newly-diagnosed EOC Bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor (VEGF), given with chemotherapy and continued as maintenance, likely results in little to no difference in OS compared to chemotherapy alone (hazard ratio (HR) 0.97, 95% confidence interval (CI) 0.88 to 1.07; 2 studies, 2776 participants; moderate-certainty evidence). Evidence is very uncertain for PFS (HR 0.82, 95% CI 0.64 to 1.05; 2 studies, 2746 participants; very low-certainty evidence), although the combination results in a slight reduction in global QoL (mean difference (MD) -6.4, 95% CI -8.86 to -3.94; 1 study, 890 participants; high-certainty evidence). The combination likely increases any adverse event (grade ≥ 3) (risk ratio (RR) 1.16, 95% CI 1.07 to 1.26; 1 study, 1485 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 2) (RR 4.27, 95% CI 3.25 to 5.60; 2 studies, 2707 participants; low-certainty evidence). Tyrosine kinase inhibitors (TKIs) to block VEGF receptors (VEGF-R), given with chemotherapy and continued as maintenance, likely result in little to no difference in OS (HR 0.99, 95% CI 0.84 to 1.17; 2 studies, 1451 participants; moderate-certainty evidence) and likely increase PFS slightly (HR 0.88, 95% CI 0.77 to 1.00; 2 studies, 2466 participants; moderate-certainty evidence). The combination likely reduces QoL slightly (MD -1.86, 95% CI -3.46 to -0.26; 1 study, 1340 participants; moderate-certainty evidence), but it increases any adverse event (grade ≥ 3) slightly (RR 1.31, 95% CI 1.11 to 1.55; 1 study, 188 participants; moderate-certainty evidence) and may result in a large increase in hypertension (grade ≥ 3) (RR 6.49, 95% CI 2.02 to 20.87; 1 study, 1352 participants; low-certainty evidence).  Recurrent EOC (platinum-sensitive) Moderate-certainty evidence from three studies (with 1564 participants) indicates that bevacizumab with chemotherapy, and continued as maintenance, likely results in little to no difference in OS (HR 0.90, 95% CI 0.79 to 1.02), but likely improves PFS (HR 0.56, 95% CI 0.50 to 0.63) compared to chemotherapy alone. The combination may result in little to no difference in QoL (MD 0.8, 95% CI -2.11 to 3.71; 1 study, 486 participants; low-certainty evidence), but it increases the rate of any adverse event (grade ≥ 3) slightly (RR 1.11, 1.07 to 1.16; 3 studies, 1538 participants; high-certainty evidence). Hypertension (grade ≥ 3) was more common in arms with bevacizumab (RR 5.82, 95% CI 3.84 to 8.83; 3 studies, 1538 participants).  TKIs with chemotherapy may result in little to no difference in OS (HR 0.86, 95% CI 0.67 to 1.11; 1 study, 282 participants; low-certainty evidence), likely increase PFS (HR 0.56, 95% CI 0.44 to 0.72; 1 study, 282 participants; moderate-certainty evidence), and may have little to no effect on QoL (MD 6.1, 95% CI -0.96 to 13.16; 1 study, 146 participants; low-certainty evidence). Hypertension (grade ≥ 3) was more common with TKIs (RR 3.32, 95% CI 1.21 to 9.10). Recurrent EOC (platinum-resistant) Bevacizumab with chemotherapy and continued as maintenance increases OS (HR 0.73, 95% CI 0.61 to 0.88; 5 studies, 778 participants; high-certainty evidence) and likely results in a large increase in PFS (HR 0.49, 95% CI 0.42 to 0.58; 5 studies, 778 participants; moderate-certainty evidence). The combination may result in a large increase in hypertension (grade ≥ 2) (RR 3.11, 95% CI 1.83 to 5.27; 2 studies, 436 participants; low-certainty evidence). The rate of bowel fistula/perforation (grade ≥ 2) may be slightly higher with bevacizumab (RR 6.89, 95% CI 0.86 to 55.09; 2 studies, 436 participants). Evidence from eight studies suggest TKIs with chemotherapy likely result in little to no difference in OS (HR 0.85, 95% CI 0.68 to 1.08; 940 participants; moderate-certainty evidence), with low-certainty evidence that it may increase PFS (HR 0.70, 95% CI 0.55 to 0.89; 940 participants), and may result in little to no meaningful difference in QoL (MD ranged from -0.19 at 6 weeks to -3.40 at 4 months). The combination increases any adverse event (grade ≥ 3) slightly (RR 1.23, 95% CI 1.02 to 1.49; 3 studies, 402 participants; high-certainty evidence). The effect on bowel fistula/perforation rates is uncertain (RR 2.74, 95% CI 0.77 to 9.75; 5 studies, 557 participants; very low-certainty evidence).Authors' ConclusionsBevacizumab likely improves both OS and PFS in platinum-resistant relapsed EOC. In platinum-sensitive relapsed disease, bevacizumab and TKIs probably improve PFS, but may or may not improve OS. The results for TKIs in platinum-resistant relapsed EOC are similar. The effects on OS or PFS in newly-diagnosed EOC are less certain, with a decrease in QoL and increase in adverse events. Overall adverse events and QoL data were more variably reported than were PFS data. There appears to be a role for anti-angiogenesis treatment, but given the additional treatment burden and economic costs of maintenance treatments, benefits and risks of anti-angiogenesis treatments should be carefully considered.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…