-
- Christoph Boesing, Laura Schaefer, Marvin Hammel, Mirko Otto, Susanne Blank, Paolo Pelosi, RoccoPatricia R MPRMLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundao, Rio de Janeiro, Brazil., Thomas Luecke, and Joerg Krebs.
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany; Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
- Anesthesiology. 2023 Sep 1; 139 (3): 249261249-261.
BackgroundSuperobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients.MethodsIn this prospective, nonrandomized crossover study including 40 superobese patients (body mass index 57.3 ± 6.4 kg/m2) undergoing laparoscopic bariatric surgery, PEEP was set according to (1) a fixed level of 8 cm H2O (PEEPEmpirical), (2) the highest respiratory system compliance (PEEPCompliance), or (3) an end-expiratory transpulmonary pressure targeting 0 cm H2O (PEEPTranspul) at different surgical positioning. The primary endpoint was end-expiratory transpulmonary pressure at different surgical positioning; secondary endpoints were respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters.ResultsIndividualized PEEPCompliance compared to fixed PEEPEmpirical resulted in higher PEEP (supine, 17.2 ± 2.4 vs. 8.0 ± 0.0 cm H2O; supine with pneumoperitoneum, 21.5 ± 2.5 vs. 8.0 ± 0.0 cm H2O; and beach chair with pneumoperitoneum; 15.8 ± 2.5 vs. 8.0 ± 0.0 cm H2O; P < 0.001 each) and less negative end-expiratory transpulmonary pressure (supine, -2.9 ± 2.0 vs. -10.6 ± 2.6 cm H2O; supine with pneumoperitoneum, -2.9 ± 2.0 vs. -14.1 ± 3.7 cm H2O; and beach chair with pneumoperitoneum, -2.8 ± 2.2 vs. -9.2 ± 3.7 cm H2O; P < 0.001 each). Titrated PEEP, end-expiratory transpulmonary pressure, and lung volume were lower with PEEPCompliance compared to PEEPTranspul (P < 0.001 each). Respiratory system and transpulmonary driving pressure and mechanical power normalized to respiratory system compliance were reduced using PEEPCompliance compared to PEEPTranspul.ConclusionsIn superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output.Copyright © 2023 American Society of Anesthesiologists. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.