• Crit Care · May 2023

    A deep learning model enables accurate prediction and quantification of pulmonary edema from chest X-rays.

    • Dominik Schulz, Sebastian Rasch, Markus Heilmaier, Rami Abbassi, Alexander Poszler, Jörg Ulrich, Manuel Steinhardt, Georgios A Kaissis, Roland M Schmid, Rickmer Braren, and Tobias Lahmer.
    • Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Munich, Germany. Dominik.Schulz@uk-augsburg.de.
    • Crit Care. 2023 May 26; 27 (1): 201201.

    BackgroundA quantitative assessment of pulmonary edema is important because the clinical severity can range from mild impairment to life threatening. A quantitative surrogate measure, although invasive, for pulmonary edema is the extravascular lung water index (EVLWI) extracted from the transpulmonary thermodilution (TPTD). Severity of edema from chest X-rays, to date is based on the subjective classification of radiologists. In this work, we use machine learning to quantitatively predict the severity of pulmonary edema from chest radiography.MethodsWe retrospectively included 471 X-rays from 431 patients who underwent chest radiography and TPTD measurement within 24 h at our intensive care unit. The EVLWI extracted from the TPTD was used as a quantitative measure for pulmonary edema. We used a deep learning approach and binned the data into two, three, four and five classes increasing the resolution of the EVLWI prediction from the X-rays.ResultsThe accuracy, area under the receiver operating characteristic curve (AUROC) and Mathews correlation coefficient (MCC) in the binary classification models (EVLWI < 15, ≥ 15) were 0.93 (accuracy), 0.98 (AUROC) and 0.86(MCC). In the three multiclass models, the accuracy ranged between 0.90 and 0.95, the AUROC between 0.97 and 0.99 and the MCC between 0.86 and 0.92.ConclusionDeep learning can quantify pulmonary edema as measured by EVLWI with high accuracy.© 2023. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…