• Neuromodulation · Jan 2024

    Review

    Intraoperative Neurophysiological Monitoring During Lead Placement for Dorsal Root Ganglion Stimulation: A Literature Review and Case Series.

    • Lei Lu, Martha Lau, Lindsey Akers, Lakota Jones, Meron Selassie, Martin Burke, Jessica Barley, Michael Hillegass, and Ezequiel Gleichgerrcht.
    • Department of Neurology, Medical University of South Carolina, Charleston, SC, USA. Electronic address: lule@musc.edu.
    • Neuromodulation. 2024 Jan 1; 27 (1): 160171160-171.

    IntroductionDorsal root ganglion stimulation (DRG-S) is a viable interventional option for intractable pain management. Although systematic data are lacking regarding the immediate neurologic complications of this procedure, intraoperative neurophysiological monitoring (IONM) can be a valuable tool to detect real-time neurologic changes and prompt intervention(s) during DRG-S performed under general anesthesia and deep sedation.Materials And MethodsIn our single-center case series, we performed multimodal IONM, including peripheral nerve somatosensory evoked potentials (pnSSEPs) and dermatomal somatosensory evoked potentials (dSSEPs), spontaneous electromyography (EMG), transcranial motor evoked potentials (MEPs), and electroencephalogram (EEG) for some trials and all permanent DRG-S lead placement per surgeon preference. Alert criteria for each IONM modality were established before data acquisition and collection. An IONM alert was used to implement an immediate repositioning of the lead to reduce any possible postoperative neurologic deficits. We reviewed the literature and summarized the current IONM modalities commonly applied during DRG-S, including somatosensory evoked potentials and EMG. Because DRG-S targets the dorsal roots, we hypothesized that including dSSEP would allow more sensitivity as a proxy for potential sensory changes under generalized anesthesia than would including standard pnSSEPs.ResultsFrom our case series of 22 consecutive procedures with 45 lead placements, one case had an alert immediately after DRG-S lead positioning. In this case, dSSEP attenuation was seen, indicating changes in the S1 dermatome, which occurred despite ipsilateral pnSSEP from the posterior tibial nerve remaining at baselines. The dSSEP alert prompted the surgeon to reposition the S1 lead, resulting in immediate recovery of the dSSEP to baseline status. The rate of IONM alerts reported intraoperatively was 4.55% per procedure and 2.22% per lead (n = 1). No neurologic deficits were reported after the procedure, resulting in no postoperative neurologic complications or deficits. No other IONM changes or alerts were observed from pnSSEP, spontaneous EMG, MEPs, or EEG modalities. Reviewing the literature, we noted challenges and potential deficiencies when using current IONM modalities for DRG-S procedures.ConclusionsOur case series suggests dSSEPs offer greater reliability than do pnSSEPs in quickly detecting neurologic changes, and subsequent neural injury, during DRG-S cases. We encourage future studies to focus on adding dSSEP to standard pnSSEP to provide a comprehensive, real-time neurophysiological assessment during lead placement for DRG-S. More investigation, collaboration, and evidence are required to evaluate, compare, and standardize comprehensive IONM protocols for DRG-S.Copyright © 2023 International Neuromodulation Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.