-
Critical care medicine · Aug 1994
Comparative StudySustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits.
- D M Bond, J McAloon, and A B Froese.
- Department of Anaesthesia, Queen's University, Kingston, ON, Canada.
- Crit. Care Med. 1994 Aug 1;22(8):1269-77.
ObjectiveTo determine whether volume recruitment maneuvers that induce significant lung reexpansion during high-frequency oscillatory ventilation are also of value during conventional positive-pressure ventilation.DesignCrossover comparison of volume recruitment maneuvers administered during high-frequency oscillatory ventilation and positive-pressure ventilation in normal and surfactant-deficient adult rabbits.SettingLaboratory.SubjectsNineteen adult New Zealand white rabbits (weight 2.3 to 3.3 kg).MethodsRespiratory system compliance was measured plethysmographically before and after sustained inflations in six normal and five saline-lavaged anesthetized rabbits, using both ventilators over a range of mean and end-expiratory pressures.ResultsUnder conditions where sustained inflations during high-frequency oscillatory ventilation at 15 Hz increased respiratory system compliance 50 +/- 28%, sustained inflations during conventional positive-pressure ventilation at a rate of 30 to 40 breaths/min and tidal volumes of 14 to 17 mL/kg did not change respiratory system compliance (mean change 3 +/- 9%). Sustained inflations during conventional positive-pressure ventilation could not be made effective by increasing the positive end-expiratory pressure level to equal the mean pressure during high-frequency oscillatory ventilation. Sustained inflations on conventional positive-pressure ventilation remained ineffective up to positive end-expiratory pressure levels of 17.5 cm H2O. In lavaged rabbits, sustained inflations increased respiratory system compliance 49 +/- 14% during high-frequency oscillatory ventilation and 0 +/- 3% during conventional positive-pressure ventilation. Sustained inflations increased compliance significantly during conventional positive-pressure ventilation only when ventilating with tidal volumes of 7 mL/kg and low end-expiratory pressure.ConclusionsActive recruitment of lung volume during high-frequency oscillatory ventilation appears necessary, because small pressure/volume cycles adequate to support high-frequency gas transport are not able to reexpand atelectatic lung units without the aid of a sustained inflation. We conclude that volume recruitment maneuvers improve respiratory system compliance substantially during high-frequency oscillatory ventilation at 15 Hz, but these maneuvers offer potential risk and no benefit during conventional positive-pressure ventilation with large tidal volumes or when using smaller tidal volumes and high levels of positive end-expiratory pressure.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.