• Medicine · Jun 2023

    Exploring the pharmacological mechanism of Duhuo Jisheng Decoction in treating intervertebral disc degeneration based on network pharmacology.

    • Chao Song, Rui Chen, Kang Cheng, Daqian Zhou, Yongliang Mei, Jiafu Yan, and Zongchao Liu.
    • Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China.
    • Medicine (Baltimore). 2023 Jun 2; 102 (22): e33917e33917.

    BackgroundThe purpose of this study was to examine the mechanism of Duhuo Jisheng Decoction (DHJSD) in the treatment of intervertebral disc degeneration (IVDD).MethodsThe active compounds of DHJSD and their corresponding targets were obtained from the TCMSP database. "Intervertebral disc degeneration" was used as a search term in the DisGeNET, GeneCards, Comparative Toxicogenomics Database, and MalaCards database to obtain disease-related targets. Following the discovery of overlapping DHJSD and IVDD targets, enrichment analyses for Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, and WikiPathways were performed. Cytoscape 3.9.1 was used to build the "DHJSD-Active Ingredients-Target Genes-IVDD" network and protein-protein interaction network, and CytoHubba was used to screen the pivotal genes. Molecular docking confirmed the binding activity of hub genes and key components.ResultsThe bioinformatic analysis of DHJSD in the treatment of IVDD revealed 209 potential therapeutic gene targets, including 36 important gene targets and 10 of these crucial gene targets. Enrichment analysis of 36 key therapeutic targets showed that the biological processes involved in the Gene Ontology analysis of DHJSD in treating IVDD were mainly cytokine-mediated signaling pathway, inflammatory response, negative regulation of apoptotic process, and vascular endothelial growth factor production. The Kyoto Encyclopedia of Genes and Genomes signaling pathway is mainly involved in TNF signaling pathway, Th17 cell differentiation, IL-17 signaling pathway, and HIF-1 signaling pathway. The Recactome signaling pathway is mainly involved in cytokine signaling in immune system, cellular responses to stress, immune system, cytokines, and inflammatory response. HIF1A and PPARG regulation of glycolysis are mostly involved in the WikiPathways signaling system. The findings demonstrated that to cure IVDD, DHJSD affects the pathogenic processes of inflammation, extracellular matrix, cellular senescence, autophagy, apoptosis, focal death, and proliferation through the aforementioned targets and signaling pathways. The results of molecular docking demonstrated that the protein can be effectively bound by the DHJSD active component. Further evidence was provided for the molecular mechanism through which DHJSD works to treat IVDD.ConclusionThis study uncovers the multi-component, multi-target, and multi-pathway characteristics of DHJSD for the treatment of IVDD, offering fresh perspectives to further investigate the mechanism of DHJSD for the treatment of IVDD.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.