• Annals of surgery · Dec 2023

    Development, Deployment, and Implementation of a Machine Learning Surgical Case Length Prediction Model and Prospective Evaluation.

    • Hamed Zaribafzadeh, Wendy L Webster, Christopher J Vail, Thomas Daigle, Allan D Kirk, Peter J Allen, Ricardo Henao, and Daniel M Buckland.
    • Department of Biostatistics and Bioinformatics, and Department of Surgery, Duke University, Durham, NC.
    • Ann. Surg. 2023 Dec 1; 278 (6): 890895890-895.

    ObjectiveTo implement a machine learning model using only the restricted data available at case creation time to predict surgical case length for multiple services at different locations.BackgroundThe operating room is one of the most expensive resources in a health system, estimated to cost $22 to $133 per minute and generate about 40% of hospital revenue. Accurate prediction of surgical case length is necessary for efficient scheduling and cost-effective utilization of the operating room and other resources.MethodsWe introduced a similarity cascade to capture the complexity of cases and surgeon influence on the case length and incorporated that into a gradient-boosting machine learning model. The model loss function was customized to improve the balance between over- and under-prediction of the case length. A production pipeline was created to seamlessly deploy and implement the model across our institution.ResultsThe prospective analysis showed that the model output was gradually adopted by the schedulers and outperformed the scheduler-predicted case length from August to December 2022. In 33,815 surgical cases across outpatient and inpatient platforms, the operational implementation predicted 11.2% fewer underpredicted cases and 5.9% more cases within 20% of the actual case length compared with the schedulers and only overpredicted 5.3% more. The model assisted schedulers to predict 3.4% more cases within 20% of the actual case length and 4.3% fewer underpredicted cases.ConclusionsWe created a unique framework that is being leveraged every day to predict surgical case length more accurately at case posting time and could be potentially utilized to deploy future machine learning models.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.