• Pediatr Crit Care Me · Sep 2023

    Plateau Pressure and Driving Pressure in Volume- and Pressure-Controlled Ventilation: Comparison of Frictional and Viscoelastic Resistive Components in Pediatric Acute Respiratory Distress Syndrome.

    • Pablo Cruces, Diego Moreno, Sonia Reveco, Yenny Ramirez, and Franco Díaz.
    • Departamento de Pediatría, Unidad de Paciente Crítico Pediátrico, Hospital El Carmen de Maipú, Santiago, Chile.
    • Pediatr Crit Care Me. 2023 Sep 1; 24 (9): 750759750-759.

    ObjectivesTo examine frictional, viscoelastic, and elastic resistive components, as well threshold pressures, during volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) in pediatric patients with acute respiratory distress syndrome (ARDS).DesignProspective cohort study.SettingSeven-bed PICU, Hospital El Carmen de Maipú, Chile.PatientsEighteen mechanically ventilated patients less than or equal to 15 years old undergoing neuromuscular blockade as part of management for ARDS.InterventionsNone.Measurements And Main ResultsAll patients were in VCV mode during measurement of pulmonary mechanics, including: the first pressure drop (P1) upon reaching zero flow during the inspiratory hold, peak inspiratory pressure (PIP), plateau pressure (P PLAT ), and total positive end-expiratory pressure (tPEEP). We calculated the components of the working pressure, as defined by the following: frictional resistive = PIP-P1; viscoelastic resistive = P1-P PLAT ; purely elastic = driving pressure (ΔP) = P PLAT -tPEEP; and threshold = intrinsic PEEP. The procedures and calculations were repeated on PCV, keeping the same tidal volume and inspiratory time. Measurements in VCV were considered the gold standard. We performed Spearman correlation and Bland-Altman analysis. The median (interquartile range [IQR]) for patient age was 5 months (2-17 mo). Tidal volume was 5.7 mL/kg (5.3-6.1 mL/kg), PIP cm H 2 O 26 (23-27 cm H 2 O), P1 23 cm H 2 O (21-26 cm H 2 O), P PLAT 19 cm H 2 O (17-22 cm H 2 O), tPEEP 9 cm H 2 O (8-9 cm H 2 O), and ΔP 11 cm H 2 O (9-13 cm H 2 O) in VCV mode at baseline. There was a robust correlation (rho > 0.8) and agreement between frictional resistive, elastic, and threshold components of working pressure in both modes but not for the viscoelastic resistive component. The purely frictional resistive component was negligible. Median peak inspiratory flow with decelerating-flow was 21 (IQR, 15-26) and squared-shaped flow was 7 L/min (IQR, 6-10 L/min) ( p < 0.001).ConclusionsP PLAT , ΔP, and tPEEP can guide clinical decisions independent of the ventilatory mode. The modest purely frictional resistive component emphasizes the relevance of maintaining the same safety limits, regardless of the selected ventilatory mode. Therefore, peak inspiratory flow should be studied as a mechanism of ventilator-induced lung injury in pediatric ARDS.Copyright © 2023 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.