• Journal of neurotrauma · Nov 2023

    Neuropathological outcomes of traumatic brain injury and alcohol use in males and females: studies using preclinical rodent and clinical human specimens.

    • Joshua B Schwartzenburg, Shealan C Cruise, Ryan E Reed, Corrine M Hutchinson, Oygul S Mirzalieva, Kimberly N Edwards, Scott Edwards, Nicholas W Gilpin, Patricia E Molina, and Shyamal D Desai.
    • Department of Biochemistry and Molecular Biology and LSUHSC-School of Medicine, New Orleans, Louisiana.
    • J. Neurotrauma. 2023 Nov 1; 40 (21-22): 241024262410-2426.

    AbstractTraumatic brain injury (TBI) and alcohol misuse are inextricably linked and can increase the risk for development of neurodegenerative diseases, particularly in military veterans and contact sport athletes. Proteinopathy (defects in protein degradation) is considered an underlying factor in neurodegenerative diseases. Whether it contributes to TBI/alcohol-mediated neurodegeneration is unexplored, however. Our recent studies have identified ISGylation, a conjugated form of ISG15 (Interferon-Stimulated Gene 15) and inducer of proteinopathy, as a potential mechanistic link underlying TBI-mediated neurodegeneration and proteinopathy in veterans. In the current study, a rat model of combined TBI and alcohol use was utilized to investigate the same relationship. Here, we report sustained induction of Interferon β (IFNβ), changes in TAR DNA Binding 43 (TDP-43) ISGylation levels, TDP-43 proteinopathy (C-terminal fragmentation [CTF]), and neurodegeneration in the ventral horns of the lumbar spinal cords (LSCs) and/or motor cortices (MCs) of female rats post-TBI in a time-dependent manner. In males, these findings mostly remained non-significant, although moderate alcohol use appears to decrease neurodegeneration in males (but not females) post-TBI. We, however, do not claim that moderate alcohol consumption is beneficial for preventing TBI-mediated neurodegeneration. We have previously demonstrated that ISGylation is increased in the LSCs of veterans with TBI/ALS (amyotrophic lateral sclerosis). Here, we show increased ISGylation of TDP-43 in the LSCs of TBI/ALS-afflicted female veterans compared with male veterans. Knowing that ISGylation induces proteinopathy, we suggest targeting ISGylation may prevent proteinopathy-mediated neurodegeneration post-TBI, particularly in women; however, causal studies are required to confirm this claim.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.