-
- Nalinda Dissanayaka, Liam R Maclachlan, Hamish Alexander, Michael Redmond, Danilo Carluccio, Luigi Jules-Vandi, and James I Novak.
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia.
- World Neurosurg. 2023 Aug 1; 176: e651e663e651-e663.
Objective3D printing is increasingly used to fabricate three-dimensional neurosurgical simulation models, making training more accessible and economical. 3D printing includes various technologies with different capabilities for reproducing human anatomy. This study evaluated different materials across a broad range of 3D printing technologies to identify the combination that most precisely represents the parietal region of the skull for burr hole simulation.MethodsEight different materials (polyethylene terephthalate glycol, Tough PLA, FibreTuff, White Resin, BoneSTN, SkullSTN, polymide [PA12], glass-filled polyamide [PA12-GF]) across 4 different 3D printing processes (fused filament fabrication, stereolithography, material jetting, selective laser sintering) were produced as skull samples that fit into a larger head model derived from computed tomography imaging. Five neurosurgeons conducted burr holes on each sample while blinded to the details of manufacturing method and cost. Qualities of mechanical drilling, visual appearance, skull exterior, and skull interior (i.e., diploë) and overall opinion were documented, and a final ranking activity was performed along with a semistructured interview.ResultsThe study found that 3D printed polyethylene terephthalate glycol (using fused filament fabrication) and White Resin (using stereolithography) were the best models to replicate the skull, surpassing advanced multimaterial samples from a Stratasys J750 Digital Anatomy Printer. The interior (e.g., infill) and exterior structures strongly influenced the overall ranking of samples. All neurosurgeons agreed that practical simulation with 3D printed models can play a vital role in neurosurgical training.ConclusionsThe study findings reveal that widely accessible desktop 3D printers and materials can play a valuable role in neurosurgical training.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.