• Medicine · Jun 2023

    Predicting AKI in patients with AMI: Development and assessment of a new predictive nomogram.

    • Xun Wang and Xianghua Fu.
    • Department of Cardiology. The Second Hospital of Hebei Medical University, Shijiazhuang, China.
    • Medicine (Baltimore). 2023 Jun 16; 102 (24): e33991e33991.

    AbstractAcute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI) and is associated with both long- and short-term consequences. This study aimed to investigate relevant risk variables and create a nomogram that predicts the probability of AKI in patients with AMI, so that prophylaxis could be initiated as early as possible. Data were gathered from the medical information mart for the intensive care IV database. We included 1520 patients with AMI who were admitted to the coronary care unit or the cardiac vascular intensive care unit. The primary outcome was AKI during hospitalization. Independent risk factors for AKI were identified by applying least absolute shrinkage and selection operator regression models and multivariate logistic regression analyses. A multivariate logistic regression analysis was used to build a predictive model. The discrimination, calibration, and clinical usefulness of the prediction model were assessed using C-index, calibration plot, and decision curve analysis. Internal validation was assessed using bootstrapping validation. Of 1520 patients, 731 (48.09%) developed AKI during hospitalization. Hemoglobin, estimated glomerular filtration rate, sodium, bicarbonate, total bilirubin, age, heart failure, and diabetes were identified as predictive factors for the nomogram construction (P < .01). The model displayed good discrimination, with a C-index of 0.857 (95% CI:0.807-0.907), and good calibration. A high C-index value of 0.847 could still be reached during interval validation. Decision curve analysis showed that the AKI nomogram was clinically useful when the intervention was determined at an AKI possibility threshold of 10%. The nomogram constructed herein can successfully predict the risk of AKI in patients with AMI early and provide critical information that can facilitate prompt and efficient interventions.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.