• Am. J. Med. Sci. · Sep 2023

    Review

    Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach.

    • Donald M Miller, Kavitha Yadanapudi, Veeresh Rai, Shesh N Rai, Joseph Chen, Hermann B Frieboes, Adrianna Masters, Abigail McCallum, and Brian J Williams.
    • Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA. Electronic address: donaldmi@ulh.org.
    • Am. J. Med. Sci. 2023 Sep 1; 366 (3): 185198185-198.

    AbstractGlioblastoma (GBM), the most common human brain tumor, has been notoriously resistant to treatment. As a result, the dismal overall survival of GBM patients has not changed over the past three decades. GBM has been stubbornly resistant to checkpoint inhibitor immunotherapies, which have been remarkably effective in the treatment of other tumors. It is clear that GBM resistance to therapy is multifactorial. Although therapeutic transport into brain tumors is inhibited by the blood brain barrier, there is evolving evidence that overcoming this barrier is not the predominant factor. GBMs generally have a low mutation burden, exist in an immunosuppressed environment and they are inherently resistant to immune stimulation, all of which contribute to treatment resistance. In this review, we evaluate the contribution of multi-omic approaches (genomic and metabolomic) along with analyzing immune cell populations and tumor biophysical characteristics to better understand and overcome GBM multifactorial resistance to treatment.Copyright © 2023 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…