-
- Rintaro Miyo, Koichiro Yasaka, Akiyoshi Hamada, Naoya Sakamoto, Reina Hosoi, Masumi Mizuki, and Osamu Abe.
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan.
- Medicine (Baltimore). 2023 Jun 9; 102 (23): e33910e33910.
AbstractTo compare the quality and interobserver agreement in the evaluation of lumbar spinal stenosis (LSS) on computed tomography (CT) images between deep-learning reconstruction (DLR) and hybrid iterative reconstruction (hybrid IR). This retrospective study included 30 patients (age, 71.5 ± 12.5 years; 20 men) who underwent unenhanced lumbar CT. Axial and sagittal CT images were reconstructed using hybrid IR and DLR. In the quantitative analysis, a radiologist placed regions of interest within the aorta and recorded the standard deviation of the CT attenuation (i.e., quantitative image noise). In the qualitative analysis, 2 other blinded radiologists evaluated the subjective image noise, depictions of structures, overall image quality, and degree of LSS. The quantitative image noise in DLR (14.8 ± 1.9/14.2 ± 1.8 in axial/sagittal images) was significantly lower than that in hybrid IR (21.4 ± 4.4/20.6 ± 4.0) (P < .0001 for both, paired t test). Subjective image noise, depictions of structures, and overall image quality were significantly better with DLR than with hybrid IR (P < .006, Wilcoxon signed-rank test). Interobserver agreements in the evaluation of LSS (with 95% confidence interval) were 0.732 (0.712-0.751) and 0.794 (0.781-0.807) for hybrid IR and DLR, respectively. DLR provided images with improved quality and higher interobserver agreement in the evaluation of LSS in lumbar CT than hybrid IR.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.