• Journal of neurosurgery · Jun 2022

    Aneurysm presence at the anterior communicating artery bifurcation is associated with caliber tapering of the A1 segment.

    • Alexandra Lauric, Luke Silveira, Emal Lesha, Jeffrey M Breton, and Adel M Malek.
    • 1Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts.
    • J. Neurosurg. 2022 Jun 1; 136 (6): 169417041694-1704.

    ObjectiveVessel tapering results in blood flow acceleration at downstream bifurcations (firehose nozzle effect), induces hemodynamics predisposing to aneurysm initiation, and has been associated with middle cerebral artery (MCA) aneurysm presence and rupture status. The authors sought to determine if vessel caliber tapering is a generalizable predisposing factor by evaluating upstream A1 segment profiles in association with aneurysm presence in the anterior communicating artery (ACoA) complex, the most prevalent cerebral aneurysm location associated with a high rupture risk.MethodsThree-dimensional rotational angiographic studies were analyzed for 68 patients with ACoA aneurysms, 37 nonaneurysmal contralaterals, and 53 healthy bilateral controls (211 samples total). A1 segments were determined to be dominant, codominant, or nondominant based on flow and size. Equidistant cross-sectional orthogonal cuts were generated along the A1 centerline, and cross-sectional area (CSA) was evaluated proximally and distally, using intensity-invariant edge detection filtering. The relative tapering of the A1 segment was evaluated as the tapering ratio (distal/proximal CSA). Computational fluid dynamics was simulated on ACoA parametric models with and without tapering.ResultsAneurysms occurred predominantly on dominant (79%) and codominant (17%) A1 segments. A1 segments leading to unruptured ACoA aneurysms had significantly greater tapering compared to nonaneurysmal contralaterals (0.69 ± 0.13 vs 0.80 ± 0.17, p = 0.001) and healthy controls (0.69 ± 0.13 vs 0.83 ± 0.16, p < 0.001), regardless of dominance labeling. There was no statistically significant difference in tapering values between contralateral A1 and healthy A1 controls (0.80 ± 0.17 vs 0.83 ± 0.16, p = 0.56). Hemodynamically, A1 segment tapering induces high focal pressure, high wall shear stress, and high velocity at the ACoA bifurcation.ConclusionsAneurysmal, but not contralateral or healthy control, A1 segments demonstrated significant progressive vascular tapering, which is associated with aneurysmogenic hemodynamic conditions at the ACoA complex. Demonstration of the upstream tapering effect in the communicating ACoA segment is consistent with its prior detection in the noncommunicating MCA bifurcation, which together form more than 50% of intracranial aneurysms. The mechanistic characterization of this upstream vascular tapering phenomenon is warranted to understand its clinical relevance and devise potential therapeutic strategies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…