• Medicine · Jun 2023

    Study on identification algorithm of traditional Chinese medicinals microscopic image based on convolutional neural network.

    • Yiyi Ma, Yanmei Zhong, Qin Su, Luman Xu, Haibei Song, and Chuanbiao Wen.
    • The Institute of Digital Medical, School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
    • Medicine (Baltimore). 2023 Jun 23; 102 (25): e34085e34085.

    UnlabelledWhen the similarity of medicinal materials is high and easily confused, the traditional subjective judgment has an impact on the identification results. Use high-dimensional features to identify medicinal materials to ensure the quality of Chinese herbal concoction products and proprietary Chinese medicines.ObjectiveTo study the identification algorithm of traditional Chinese medicinals (TCM) microscopic images based on convolutional neural network (CNN) to improve the objectivity and accuracy of microscopic image identification of TCM powders.MethodsMicroscopic image datasets of 4 TCM powders sclereids of Rhizoma Coptidis, Cortex Magnoliae Officinalis, Cortex Phellodendri Chinensis, and Cortex Cinnamomi were constructed, and 400 collected images, as the model training and testing objects, were identified and classified by AlexNet model, VGGNet-16, VGGNet-19, and GoogLeNet model.ResultsThe average recognition accuracy in the tested microscopic image of AlexNet model, VGGNet-16, VGGNet-19, and the GoogLeNet model is 93.50%, 95.75%, 95.75%, and 97.50% correspondingly.ConclusionThe GoogLeNet model has a higher classification accuracy and is the best model to achieve real-time. Applying the CNN to the identification of microscopic images of TCM powders makes the operation of TCM identification simpler and the measurement more accurate while improving repeatability.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…