-
- Ken Steffen Frahm, Sabata Gervasio, Federico Arguissain, and André Mouraux.
- Integrative Neuroscience Group, CNAP - Center for Neuroplasticity and Pain, SMI©, Department of Health Science & Technology, Aalborg University, Aalborg, Denmark.
- Eur J Pain. 2023 Nov 1; 27 (10): 122612381226-1238.
BackgroundInfrared laser stimulation is a valuable tool in pain research, its primary application being the recording of laser-evoked brain potentials (LEPs). Different types of laser stimulators, varying in their skin penetrance, are likely to have a large influence on the LEPs, when stimulating different skin types. The aim of this study was to investigate how LEPs depend on laser type and skin location.MethodsTwo different laser stimulators (CO2 and Nd:YAP) were used to compare LEPs in healthy subjects. Stimuli were delivered to the hand dorsum and palm to investigate the effects of skin type on the evoked responses. Stimulus-evoked brain responses were recorded using EEG and perceived intensity ratings were recorded. Computational modelling was used to investigate the observed differences.ResultsLEPs evoked by stimulation of the hairy skin were similar between CO2 and Nd:YAP stimulation. In contrast, LEPs elicited from the palm were markedly different and barely present for CO2 stimulation. There was a significant interaction between laser type and skin type (RM-ANOVA, p < 0.05) likely due to smaller CO2 LEPs in the palm. CO2 stimuli to the palm also elicited significantly lower perceived intensities. The computational model showed that the observed differences were explainable by the laser absorption characteristics and skin thickness affecting the temperature profile at the dermo-epidermal junction (DEJ).ConclusionsThis study shows that LEP elicitation depends on the combination of laser penetrance and skin type. Low penetrance stimuli, from a CO2 laser, elicited significantly lower LEPs and perceived intensities in the palm.SignificanceThis study showed that the elicitation of laser-evoked potentials in healthy humans greatly depends on the combination of laser stimulator type and skin type. It was shown that high penetrance laser stimuli are capable of eliciting responses in both hairy and glabrous skin, whereas low penetrance stimuli barely elicited responses from the glabrous skin. Computational modelling was used to demonstrate that the results could be fully explained by the combination of laser type and skin thickness.© 2023 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC ®.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.