• Medicina · May 2023

    Experimental Study on Mechanical Properties of Different Resins Used in Oral Environments.

    • Elena-Raluca Baciu, Carmen Nicoleta Savin, Monica Tatarciuc, Ioana Mârțu, Oana Maria Butnaru, Andra Elena Aungurencei, Andrei-Marius Mihalache, and Diana Diaconu-Popa.
    • Department of Oral Implantology, Discipline of Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iași, Romania.
    • Medicina (Kaunas). 2023 May 28; 59 (6).

    AbstractBackground and Objectives: Acrylic resins remain the materials of choice for removable prosthesis due to their indisputable qualities. The continuous evolution in the field of dental materials offers practitioners today a multitude of therapeutic options. With the development of digital technologies, including both subtractive and additive methods, workflow has been considerably reduced and the precision of prosthetic devices has increased. The superiority of prostheses made by digital methods compared to conventional prostheses is much debated in the literature. Our study's objective was to compare the mechanical and surface properties of three types of resins used in conventional, subtractive, and additive technologies and to determine the optimal material and the most appropriate technology to obtain removable dentures with the highest mechanical longevity over time. Materials and Methods: For the mechanical tests, 90 samples were fabricated using the conventional method (heat curing), CAD/CAM milling, and 3D printing technology. The samples were analyzed for hardness, roughness, and tensile tests, and the data were statistically compared using Stata 16.1 software (StataCorp, College Station, TX, USA). A finite element method was used to show the behavior of the experimental samples in terms of the crack shape and its direction of propagation. For this assessment the materials had to be designed inside simulation software that has similar mechanical properties to those used for obtaining specimens for tensile tests. Results: The results of this study suggested that CAD/CAM milled samples showed superior surface characteristics and mechanical properties, comparable with conventional heat-cured resin samples. The propagation direction predicted by the finite element analysis (FEA) software was similar to that observed in a real-life specimen subjected to a tensile test. Conclusions: Removable dentures made from heat-cured resins remain a clinically acceptable option due to their surface quality, mechanical properties, and affordability. Three-dimensional printing technology can be successfully used as a provisional or emergency therapeutic solution. CAD/CAM milled resins exhibit the best mechanical properties with great surface finishes compared to the other two processing methods.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…