• Pain Res Manag · Jan 2023

    Review

    Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives.

    • Marco Cascella, Daniela Schiavo, Arturo Cuomo, Alessandro Ottaiano, Francesco Perri, Renato Patrone, Sara Migliarelli, Elena Giovanna Bignami, Alessandro Vittori, and Francesco Cutugno.
    • Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples 80131, Italy.
    • Pain Res Manag. 2023 Jan 1; 2023: 60187366018736.

    AbstractAlthough proper pain evaluation is mandatory for establishing the appropriate therapy, self-reported pain level assessment has several limitations. Data-driven artificial intelligence (AI) methods can be employed for research on automatic pain assessment (APA). The goal is the development of objective, standardized, and generalizable instruments useful for pain assessment in different clinical contexts. The purpose of this article is to discuss the state of the art of research and perspectives on APA applications in both research and clinical scenarios. Principles of AI functioning will be addressed. For narrative purposes, AI-based methods are grouped into behavioral-based approaches and neurophysiology-based pain detection methods. Since pain is generally accompanied by spontaneous facial behaviors, several approaches for APA are based on image classification and feature extraction. Language features through natural language strategies, body postures, and respiratory-derived elements are other investigated behavioral-based approaches. Neurophysiology-based pain detection is obtained through electroencephalography, electromyography, electrodermal activity, and other biosignals. Recent approaches involve multimode strategies by combining behaviors with neurophysiological findings. Concerning methods, early studies were conducted by machine learning algorithms such as support vector machine, decision tree, and random forest classifiers. More recently, artificial neural networks such as convolutional and recurrent neural network algorithms are implemented, even in combination. Collaboration programs involving clinicians and computer scientists must be aimed at structuring and processing robust datasets that can be used in various settings, from acute to different chronic pain conditions. Finally, it is crucial to apply the concepts of explainability and ethics when examining AI applications for pain research and management.Copyright © 2023 Marco Cascella et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.