• J Palliat Med · Dec 2023

    An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences.

    • Jeremy E Matt, Donna M Rizzo, Ali Javed, Margaret J Eppstein, Viktoria Manukyan, Cailin Gramling, Advik Mandar Dewoolkar, and Robert Gramling.
    • Graduate Program in Complex Systems and Data Science, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont, USA.
    • J Palliat Med. 2023 Dec 1; 26 (12): 162716331627-1633.

    AbstractContext: Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. Purpose: To assess the feasibility of automating the identification of a conversational feature, Connectional Silence, which is associated with important patient outcomes. Methods: Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools-a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts. Results: Our ML pipeline identified Connectional Silence with an overall sensitivity of 84% and specificity of 92%. For Emotional and Invitational subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively. Conclusion: These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of Connectional Silence in natural hospital-based clinical conversations.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…