-
J. Korean Med. Sci. · Jul 2023
Clinical Characteristics and Risk Factors for Mortality in Critical COVID-19 Patients Aged 50 Years or Younger During Omicron Wave in Korea: Comparison With Patients Older Than 50 Years of Age.
- Hye Jin Shi, Jinyoung Yang, Joong Sik Eom, Jae-Hoon Ko, Kyong Ran Peck, Uh Jin Kim, Sook In Jung, Seulki Kim, Hyeri Seok, Miri Hyun, Hyun Ah Kim, Bomi Kim, Eun-Jeong Joo, Hae Suk Cheong, Cheon Hoo Jun, Yu Mi Wi, Jungok Kim, Sungmin Kym, Seungjin Lim, and Yoonseon Park.
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
- J. Korean Med. Sci. 2023 Jul 17; 38 (28): e217e217.
BackgroundThe coronavirus disease 2019 (COVID-19) pandemic has caused the death of thousands of patients worldwide. Although age is known to be a risk factor for morbidity and mortality in COVID-19 patients, critical illness or death is occurring even in the younger age group as the epidemic spreads. In early 2022, omicron became the dominant variant of the COVID-19 virus in South Korea, and the epidemic proceeded on a large scale. Accordingly, this study aimed to determine whether young adults (aged ≤ 50 years) with critical COVID-19 infection during the omicron period had different characteristics from older patients and to determine the risk factors for mortality in this specific age group.MethodsWe evaluated 213 critical adult patients (high flow nasal cannula or higher respiratory support) hospitalized for polymerase chain reaction-confirmed COVID-19 in nine hospitals in South Korea between February 1, 2022 and April 30, 2022. Demographic characteristics, including body mass index (BMI) and vaccination status; underlying diseases; clinical features and laboratory findings; clinical course; treatment received; and outcomes were collected from electronic medical records (EMRs) and analyzed according to age and mortality.ResultsOverall, 71 critically ill patients aged ≤ 50 years were enrolled, and 142 critically ill patients aged over 50 years were selected through 1:2 matching based on the date of diagnosis. The most frequent underlying diseases among those aged ≤ 50 years were diabetes and hypertension, and all 14 patients who died had either a BMI ≥ 25 kg/m² or an underlying disease. The total case fatality rate among severe patients (S-CFR) was 31.0%, and the S-CFR differed according to age and was higher than that during the delta period. The S-CFR was 19.7% for those aged ≤ 50 years, 36.6% for those aged > 50 years, and 38.1% for those aged ≥ 65 years. In multivariate analysis, age (odds ratio [OR], 1.084; 95% confidence interval [CI], 1.043-1.127), initial low-density lipoprotein > 600 IU/L (OR, 4.782; 95% CI, 1.584-14.434), initial C-reactive protein > 8 mg/dL (OR, 2.940; 95% CI, 1.042-8.293), highest aspartate aminotransferase > 200 IU/L (OR, 12.931; 95% CI, 1.691-98.908), and mechanical ventilation implementation (OR, 3.671; 95% CI, 1.294-10.420) were significant independent predictors of mortality in critical COVID-19 patients during the omicron wave. A similar pattern was shown when analyzing the data by age group, but most had no statistical significance owing to the small number of deaths in the young critical group. Although the vaccination completion rate of all the patients (31.0%) was higher than that in the delta wave period (13.6%), it was still lower than that of the general population. Further, only 15 (21.1%) critically ill patients aged ≤ 50 years were fully vaccinated. Overall, the severity of hospitalized critical patients was significantly higher than that in the delta period, indicating that it was difficult to find common risk factors in the two periods only with a simple comparison.ConclusionOverall, the S-CFR of critically ill COVID-19 patients in the omicron period was higher than that in the delta period, especially in those aged ≤ 50 years. All of the patients who died had an underlying disease or obesity. In the same population, the vaccination rate was very low compared to that in the delta wave, indicating that non-vaccination significantly affected the progression to critical illness. Notably, there was a lack of prescription for Paxlovid for these patients although they satisfied the prescription criteria. Early diagnosis and active initial treatment was necessary, along with the proven methods of vaccination and personal hygiene. Further studies are needed to determine how each variant affects critically ill patients.© 2023 The Korean Academy of Medical Sciences.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.