• Shock · Sep 2023

    The alarmin effect of HMGB1/RIP3 on transfusion-related acute lung injury via TLR4/NF-κB or MAPK pathway.

    • Shuangchun Liu, Ronghai Lin, Xianchao Zhang, Yinyi Lv, Jie Zhu, Guang Chen, and Yunting Du.
    • Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China.
    • Shock. 2023 Sep 1; 60 (3): 400409400-409.

    AbstractNonantibody-mediated transfusion-related acute lung injury (TRALI) may account for up to 25% of TRALI cases. This indicates the need for further research to understand the pathophysiological mechanisms involved beyond antibody mediation fully. During this research, a TRALI rat model was developed using the trauma-blood loss-massive transfusion method. The severity of pulmonary edema was checked via measurement of lung histopathological changes and the amount of Evans blue dye fluid and bronchoalveolar lavage fluid protein leakage. In addition, potential mechanisms of pathophysiological pathways and inflammation cascades were investigated in TRALI rats in vivo . The findings indicated that TRALI increased inflammatory cytokines and triggered elevated levels of high-mobility group box 1 (HMGB1)/receptor-interacting protein kinase 3 (RIP3), apoptosis protein, and mRNAs in the TM (TRALI model) group as opposed to the normal control. Furthermore, TRALI activated the toll-like receptor 4/nuclear factor kappa B and mitogen-activated protein kinase signaling pathways, which partially regulated the inflammatory response in the TRALI rats. A significant increase was observed in the inflammatory mediators HMGB1 and RIP3 during the early stages of TRALI, suggesting that these mediators could be used as diagnostic markers for TRALI. In addition, HMGB1 and RIP3 promoted the inflammatory response by stimulating the toll-like receptor 44/nuclear factor kappa B and mitogen-activated protein kinase signaling pathways in the lung tissue of rats. Identifying efficient agents from inflammatory mediators such as alarmin can be an innovative scheme for diagnosing and preventing TRALI. These findings give HMGB1 and RIP3 a strong theoretical and experimental foundation for clinical use.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.