• Turk J Med Sci · Apr 2023

    Resveratrol attenuated high intensity exercise training-induced inflammation and ferroptosis via Nrf2/FTH1/GPX4 pathway in intestine of mice.

    • Zhe Xu, Xiaonan Sun, Bin Ding, Ming Zi, and Yan Ma.
    • Department of Physical Education, Heilongjiang Bayi Agricultural University, Daqing, China.
    • Turk J Med Sci. 2023 Apr 1; 53 (2): 446454446-454.

    BackgroundModerate exercise has beneficial effects for human health and is helpful for the protection against several diseases. However, high intensity exercise training caused gastrointestinal syndrome. Resveratrol, a plant extract, plays a vital role in protecting various organs. However, whether resveratrol protected mice against high intensity exercise training-induced intestinal damage remains unclear. In this study, our objective was to investigate the protective effects and mechanism of resveratrol in high intensity exercise training-treated mice.MethodsMice were treated with swimming exercise protocol and/or resveratrol (15 mg/kg/day) for 28 consecutive days. Then, the mice were sacrificed, and a series of evaluation indicators, including inflammatory factors and intestinal permeability of the gut, were measured based on this model. The expressions of inflammatory factors (tumor necrosis factor (TNF)-α; interferon (IFN)-γ, interleukin (IL)-6 and IL-10), oxidative stress (Nrf2, glutathione (GSH), hydrogen peroxide (H2 O2), catalase (CAT) and malondialdehyde(MDA)), intestinal barrier (gut permeability, ZO-1, Occludin and Claudin-1 as well as ferroptosis (Fe2+, Fe3+, SLC7A11, glutathioneperoxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1)) were measured, respectively.ResultsHigh intensity exercise training induced colon damage, manifested as inflammation (increased TNF-α, IFN-γ and IL-6 concentrations, and decreased IL-10 concentration), oxidative stress (the increase of H2O2 and MDA concentration, and the reduced CAT and GSH activities), intestinal barrier injury (increased gut permeability and intestinal fatty-acid binding protein concentration,and inhibited ZO-1, Occludin and Claudin-1 expressions) and ferroptosis (the increased of Fe2+ and Fe3+ concentrations, and suppressed phosphorylated Nrf2, SLC7A11, GPX4 and FTH1), which was relieved by resveratrol treatment in mice.DiscussionResveratrol attenuated high intensity exercise training-induced inflammation and ferroptosis through activating Nrf2/ FTH1/GPX4 pathway in mouse colon, which providing new ideas for the prevention and treatment of occupational disease in athlete.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.