• Crit Care · Jul 2023

    Multicenter Study

    Using metabolomics to predict severe traumatic brain injury outcome (GOSE) at 3 and 12 months.

    • Mohammad M Banoei, Chel Hee Lee, James Hutchison, William Panenka, Cheryl Wellington, David S Wishart, Brent W Winston, and Canadian biobank, database for Traumatic Brain Injury (CanTBI) investigators, the Canadian Critical Care Translational Biology Group (CCCTBG), the Canadian Traumatic Brain Injury Research, Clinical Network (CTRC).
    • Department of Critical Care Medicine, University of Calgary, Alberta, Canada.
    • Crit Care. 2023 Jul 22; 27 (1): 295295.

    BackgroundPrognostication is very important to clinicians and families during the early management of severe traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensitive and specific biomarkers to predict outcomes.MethodsWe prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI (CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS) and untargeted proton nuclear magnetic resonance spectroscopy (1H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the association between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5-8) and unfavorable (GOSE 1-4), outcomes.ResultsSerum metabolic profiles on days 1 and 4 post-injury were highly predictive (Q2 > 0.4-0.5) and highly accurate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic profiles on day 4 were more predictive (Q2 > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino acids, and glutamate were associated with poor outcomes and mortality.DiscussionMetabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and significant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabolite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI to be used for clinical practice.© 2023. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.