-
- Junxi Chen, Haitong Xu, Bin Xu, Yuanqing Wang, Yangyang Shi, and Linxia Xiao.
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China.
- World Neurosurg. 2023 Oct 1; 178: e472e479e472-e479.
BackgroundDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established and effective neurosurgical treatment for relieving motor symptoms in Parkinson disease. The localization of key brain structures is critical to the success of DBS surgery. However, in clinical practice, this process is heavily dependent on the radiologist's experience.MethodsIn this study, we propose an automatic localization method of key structures for STN-DBS surgery via prior-enhanced multi-object magnetic resonance imaging segmentation. We use the U-Net architecture for the multi-object segmentation, including STN, red nucleus, brain sulci, gyri, and ventricles. To address the challenge that only half of the brain sulci and gyri locate in the upper area, potentially causing interference in the lower area, we perform region of interest detection and ensemble joint processing to enhance the segmentation performance of brain sulci and gyri.ResultsWe evaluate the segmentation accuracy by comparing our method with other state-of-the-art machine learning segmentation methods. The experimental results show that our approach outperforms state-of-the-art methods in terms of segmentation performance. Moreover, our method provides effective visualization of key brain structures from a clinical application perspective and can reduce the segmentation time compared with manual delineation.ConclusionsOur proposed method uses deep learning to achieve accurate segmentation of the key structures more quickly than and with comparable accuracy to human manual segmentation. Our method has the potential to improve the efficiency of surgical planning for STN-DBS.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.