• Cochrane Db Syst Rev · Aug 2023

    Review

    Interventions for chronic kidney disease in people with sickle cell disease.

    • Noemi Ba Roy, Abigail Carpenter, Isabella Dale-Harris, Carolyn Dorée, and Lise J Estcourt.
    • Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
    • Cochrane Db Syst Rev. 2023 Aug 4; 8 (8): CD012380CD012380.

    BackgroundSickle cell disease (SCD), one of the commonest severe monogenic disorders, is caused by the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, with increased prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. This is an update of a review first published in 2017.ObjectivesTo assess the effectiveness of any intervention for preventing or reducing kidney complications or chronic kidney disease in people with sickle cell disease. Possible interventions include red blood cell transfusions, hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination.Search MethodsWe searched for relevant trials in the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, CENTRAL, MEDLINE, Embase, seven other databases, and two other trials registers.Selection CriteriaRandomised controlled trials (RCTs) comparing interventions to prevent or reduce kidney complications or CKD in people with SCD. We applied no restrictions related to outcomes examined, language, or publication status.Data Collection And AnalysisTwo review authors independently assessed trial eligibility, extracted data, assessed the risk of bias, and assessed the certainty of the evidence (GRADE).Main ResultsWe included three RCTs with 385 participants. We rated the certainty of the evidence as low to very low across different outcomes according to GRADE methodology, downgrading for risk of bias concerns, indirectness, and imprecision. Hydroxyurea versus placebo One RCT published in 2011 compared hydroxyurea to placebo in 193 children aged nine to 18 months. We are unsure if hydroxyurea compared to placebo reduces or prevents progression of kidney disease assessed by change in glomerular filtration rate (mean difference (MD) 0.58 mL/min /1.73 m2, 95% confidence interval (CI) -14.60 to 15.76; 142 participants; very low certainty). Hydroxyurea compared to placebo may improve the ability to concentrate urine (MD 42.23 mOsm/kg, 95% CI 12.14 to 72.32; 178 participants; low certainty), and may make little or no difference to SCD-related serious adverse events, including acute chest syndrome (risk ratio (RR) 0.39, 99% CI 0.13 to 1.16; 193 participants; low certainty), painful crisis (RR 0.68, 99% CI 0.45 to 1.02; 193 participants; low certainty); and hospitalisations (RR 0.83, 99% CI 0.68 to 1.01; 193 participants; low certainty). No deaths occurred in either trial arm and the RCT did not report quality of life. Angiotensin-converting enzyme inhibitors versus placebo One RCT published in 1998 compared an ACEI (captopril) to placebo in 22 adults with normal blood pressure and microalbuminuria. We are unsure if captopril compared to placebo reduces proteinuria (MD -49.00 mg/day, 95% CI -124.10 to 26.10; 22 participants; very low certainty). We are unsure if captopril reduces or prevents kidney disease as measured by creatinine clearance; the trial authors stated that creatinine clearance remained constant over six months in both groups, but provided no comparative data (very low certainty). The RCT did not report serious adverse events, all-cause mortality, or quality of life. Angiotensin-converting enzyme inhibitors versus vitamin C One RCT published in 2020 compared an ACEI (lisinopril) with vitamin C in 170 children aged one to 18 years with normal blood pressure and microalbuminuria. It reported no data we could analyse. We are unsure if lisinopril compared to vitamin C reduces proteinuria in this population: the large drop in microalbuminuria in both arms of the trial after only one month on treatment may have been due to an overestimation of microalbuminuria at baseline rather than a true effect. The RCT did not report serious adverse events, all-cause mortality, or quality of life.Authors' ConclusionsWe are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. We are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. We are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria. No RCTs assessed red blood cell transfusions or any combined interventions to prevent or reduce kidney complications. Due to lack of evidence, we cannot comment on the management of children aged over 18 months or adults with any known genotype of SCD. We have identified a lack of adequately designed and powered studies, although we found four ongoing trials since the last version of this review. Only one ongoing trial addresses renal function as a primary outcome in the short term, but such interventions have long-term effects. Trials of hydroxyurea, ACEIs or red blood cell transfusion in older children and adults are urgently needed to determine any effect on prevention or reduction of kidney complications in people with SCD.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.