• Shock · Sep 2023

    Treatment with human umbilical cord-derived mesenchymal stem cells in a pig model of sepsis-induced acute kidney injury: effects on microvascular endothelial cells and tubular cells in the kidney.

    • Ramos MaiaDébora RothsteinDRLaboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil., Denise Aya Otsuki, Camila Eleutério Rodrigues, Sabrina Zboril, Talita Rojas Sanches, Amaro Nunes Duarte Neto, Lúcia Andrade, and AulerJosé Otávio CostaJOCJrLaboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil..
    • Laboratory for Medical Research 8, Anesthesiology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
    • Shock. 2023 Sep 1; 60 (3): 469477469-477.

    AbstractBackground: Approximately 50% of patients with sepsis develop acute kidney injury (AKI), which is predictive of poor outcomes, with mortality rates of up to 70%. The endothelium is a major target for treatments aimed at preventing the complications of sepsis. We hypothesized that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) could attenuate tubular and endothelial injury in a porcine model of sepsis-induced AKI. Methods: Anesthetized pigs were induced to fecal peritonitis, resulting in septic shock, and were randomized to treatment with fluids, vasopressors, and antibiotics (sepsis group; n = 11) or to that same treatment plus infusion of 1 × 10 6 cells/kg of hUC-MSCs (sepsis+MSC group; n = 11). Results: At 24 h after sepsis induction, changes in serum creatinine and mean arterial pressure were comparable between the two groups, as was mortality. However, the sepsis+MSC group showed some significant differences in comparison with the sepsis group: lower fractional excretions of sodium and potassium; greater epithelial sodium channel protein expression; and lower protein expression of the Na-K-2Cl cotransporter and aquaporin 2 in the renal medulla. Expression of P-selectin, thrombomodulin, and vascular endothelial growth factor was significantly lower in the sepsis+MSC group than in the sepsis group, whereas that of Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) was lower in the former. Conclusion: Treatment with hUC-MSCs seems to protect endothelial and tubular cells in sepsis-induced AKI, possibly via the TLR4/NF-κB signaling pathway. Therefore, it might be an effective treatment for sepsis-induced AKI.Copyright © 2023 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.