• Military medicine · Nov 2023

    Comparison of Axial Force Attenuation Characteristics in Two Different Lower Extremity Anthropomorphic Test Devices.

    • Sajal Chirvi, Frank A Pintar, Narayan Yoganandan, and B Joseph McEntire.
    • Biomedical Engineering and Neurosurgery, Medical College of Wisconsin and VA Medical Center, 5000, W. National Avenue, Milwaukee, WI 53295, USA.
    • Mil Med. 2023 Nov 3; 188 (11-12): e3447e3453e3447-e3453.

    IntroductionAny type of boot or footwear is designed to attenuate and distribute loading to the bottom of the foot. Anthropomorphic test device (ATDs) are used to assess potential countermeasures against these loads. The specific aims of this study were to compare and quantify force attenuation characteristics as a function of input energy for Hybrid-III and Mil-Lx ATD human surrogates.Materials And MethodsTwo lower leg ATD surrogates (Mil-Lx and Hybrid-III) were tested to investigate the influence of a commercially available military boot on lower extremity force response and assess such differences against previously published postmortem human surrogate studies. The testing apparatus impacted the bottom of the foot using a rigid plate at velocities from 2 to 10 m/s. Tests were conducted on each ATD to obtain axial force response with and without boots as a function of input energy.ResultsPeak forces ranged from 1 to 16.4 kN for the Hybrid-III, and 1 to 8.4 kN for the Mil-Lx for similar input conditions. The average force attenuation for the Hybrid-III at upper and lower load cells was 71% (59%-80%) and 70% (58%-78%). The average attenuation for the Mil-Lx at upper and lower load cells was 20% (13%-28%) and 37% (36%-37%), respectively. At the knee load cell, the attenuated peak loads ranged from 62% to 81% for the Hybrid-III and 16% to 30% for the Mil-Lx.ConclusionsForce attenuation characteristics in the booted vs unbooted configuration of the Mil-Lx were significantly different than force attenuation characteristics of the H3 and may better represent in vivo forces during vertical impact injuries, such as IED blasts. Hence for military relevant applications where boots are used, the Mil-Lx may provide a more conservative evaluation of lower extremity protection systems.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2023. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.