• J. Thorac. Cardiovasc. Surg. · Mar 2024

    Mitsugumin 53 Mitigation of Ischemia Reperfusion Injury in a Mouse Model.

    • Doug A Gouchoe, Yong Gyu Lee, Jung Lye Kim, Zhentao Zhang, Joanna M Marshall, Asvin Ganapathi, Hua Zhu, Sylvester M Black, Jianjie Ma, and Bryan A Whitson.
    • COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, WPAFB, Ohio.
    • J. Thorac. Cardiovasc. Surg. 2024 Mar 1; 167 (3): e48e58e48-e58.

    ObjectivePrimary graft dysfunction is often attributed to ischemia-reperfusion injury, and prevention would be a therapeutic approach to mitigate injury. Mitsugumin 53, a myokine, is a component of the endogenous cell membrane repair machinery. Previously, exogenous administration of recombinant human (recombinant human mitsugumin 53) protein has been shown to mitigate acute lung injury. In this study, we aimed to quantify a therapeutic benefit of recombinant human mitsugumin 53 to mitigate a transplant-relevant model of ischemia-reperfusion injury.MethodsC57BL/6J mice were subjected to 1 hour of ischemia (via left lung hilar clamp), followed by 24 hours of reperfusion. mg53-/- mice were administered exogenous recombinant human mitsugumin 53 or saline before reperfusion. Tissue, bronchoalveolar lavage, and blood samples were collected at death and used to quantify the extent of lung injury via histology and biochemical assays.ResultsAdministration of recombinant human mitsugumin 53 showed a significant decrease in an established biometric profile of lung injury as measured by lactate dehydrogenase and endothelin-1 in the bronchoalveolar lavage and plasma. Biochemical markers of apoptosis and pyroptosis (interleukin-1β and tumor necrosis factor-α) were also significantly mitigated, overall demonstrating recombinant human mitsugumin 53's ability to decrease the inflammatory response of ischemia-reperfusion injury. Exogenous recombinant human mitsugumin 53 administration showed a trend toward decreasing overall cellular infiltrate and neutrophil response. Fluorescent colocalization imaging revealed recombinant human mitsugumin 53 was effectively delivered to the endothelium.ConclusionsThese data demonstrate that recombinant human mitsugumin 53 has the potential to prevent or reverse ischemia-reperfusion injury-mediated lung damage. Although additional studies are needed in wild-type mice to demonstrate efficacy, this work serves as proof-of-concept to indicate the potential therapeutic benefit of mitsugumin 53 administration to mitigate ischemia-reperfusion injury.Copyright © 2023. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…