• World Neurosurg · Nov 2023

    Meta Analysis

    Traditional machine learning methods vs. deep learning for meningioma classification, grading, outcome prediction, and segmentation: a systematic review and meta-analysis.

    • Krish M Maniar, Philipp Lassarén, Aakanksha Rana, Yuxin Yao, Ishaan A Tewarie, Jakob V E Gerstl, Camila M Recio Blanco, Liam H Power, Marco Mammi, Heather Mattie, Timothy R Smith, and Rania A Mekary.
    • Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States.
    • World Neurosurg. 2023 Nov 1; 179: e119e134e119-e134.

    BackgroundMeningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional approaches that rely on hand-crafted features and deep learning (DL) techniques that utilize automatic feature extraction. The aim of this study was to evaluate the performance of published traditional ML versus DL algorithms in classification, grading, outcome prediction, and segmentation of meningiomas.MethodsA systematic review and meta-analysis were conducted. Major databases were searched through September 2021 for publications evaluating traditional ML versus DL models on meningioma management. Performance measures including pooled sensitivity, specificity, F1-score, area under the receiver-operating characteristic curve, positive and negative likelihood ratios (LR+, LR-) along with their respective 95% confidence intervals (95% CIs) were derived using random-effects models.ResultsFive hundred thirty-four records were screened, and 43 articles were included, regarding classification (3 articles), grading (29), outcome prediction (7), and segmentation (6) of meningiomas. Of the 29 studies that reported on grading, 10 could be meta-analyzed with 2 DL models (sensitivity 0.89, 95% CI: 0.74-0.96; specificity 0.91, 95% CI: 0.45-0.99; LR+ 10.1, 95% CI: 1.33-137; LR- 0.12, 95% CI: 0.04-0.59) and 8 traditional ML (sensitivity 0.74, 95% CI: 0.62-0.83; specificity 0.93, 95% CI: 0.79-0.98; LR+ 10.5, 95% CI: 2.91-39.5; and LR- 0.28, 95% CI: 0.17-0.49). The insufficient performance metrics reported precluded further statistical analysis of other performance metrics.ConclusionsML on meningiomas is mostly carried out with traditional methods. For meningioma grading, traditional ML methods generally had a higher LR+, while DL models a lower LR-.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…