• Arch Orthop Trauma Surg · Dec 2023

    Can machine learning models predict prolonged length of hospital stay following primary total knee arthroplasty based on a national patient cohort data?

    • Tony Lin-Wei Chen, Anirudh Buddhiraju, Henry Hojoon Seo, Michelle Riyo Shimizu, Blake M Bacevich, and Young-Min Kwon.
    • Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
    • Arch Orthop Trauma Surg. 2023 Dec 1; 143 (12): 718571937185-7193.

    IntroductionThe total length of stay (LOS) is one of the biggest determinators of overall care costs associated with total knee arthroplasty (TKA). An accurate prediction of LOS could aid in optimizing discharge strategy for patients in need and diminishing healthcare expenditure. The aim of this study was to predict LOS following TKA using machine learning models developed on a national-scale patient cohort.MethodsThe ACS-NSQIP database was queried to acquire 267,966 TKA cases from 2013 to 2020. Four machine learning models-artificial neural network (ANN), random forest, histogram-based gradient boosting, and k-nearest neighbor were trained and tested on the dataset for the prediction of prolonged LOS (LOS exceeded the 75th of all values in the cohort). The model performance was assessed by discrimination (area under the receiver operating characteristic curve [AUC]), calibration, and clinical utility.ResultsANN delivered the best performance among the four models. ANN distinguished prolonged LOS in the study cohort with an AUC of 0.71 and accurately predicted the probability of prolonged LOS for individual patients (calibration slope: 0.82; calibration intercept: 0.03; Brier score: 0.089). All models demonstrated clinical utility by generating positive net benefits in decision curve analyses. Operation time, pre-operative transfusion, pre-operative laboratory tests (hematocrit, platelet count, and white blood cell count), and BMI were the strongest predictors of prolonged LOS.ConclusionANN demonstrated modest discrimination capacity and excellent performance in calibration and clinical utility for the prediction of prolonged LOS following TKA. Clinical application of the machine learning models has the potential to improve care coordination and discharge planning for patients at high risk of extended hospitalization after surgery. Incorporating more relevant patient factors may further increase the models' prediction strength.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.