• Medicina · Jul 2023

    Accurate Prediction of Sudden Cardiac Death Based on Heart Rate Variability Analysis Using Convolutional Neural Network.

    • Febriyanti Panjaitan, Siti Nurmaini, and Radiyati Umi Partan.
    • Doctoral Program of Engineering Science, Faculty of Engineering, Universitas Sriwijaya, Palembang 30128, Indonesia.
    • Medicina (Kaunas). 2023 Jul 29; 59 (8).

    AbstractSudden cardiac death (SCD) is a significant global health issue that affects individuals with and without a history of heart disease. Early identification of SCD risk factors is crucial in reducing mortality rates. This study aims to utilize electrocardiogram (ECG) tools, specifically focusing on heart rate variability (HRV), to detect early SCD risk factors. In this study, we expand the comparison group dataset to include five groups: Normal Sinus Rhythm (NSR), coronary artery disease (CAD), Congestive Heart Failure (CHF), Ventricular Tachycardia (VT), and SCD. ECG signals were recorded for 30 min and segmented into 5 min intervals, following the recommended HRV feature analysis guidelines. We introduce an innovative approach to HRV signal analysis by utilizing Convolutional Neural Networks (CNN). The CNN model was optimized by tuning hyperparameters such as the number of layers, learning rate, and batch size, significantly impacting the prediction accuracy. The findings demonstrate that the HRV approach, in conjunction with linear features and the DL method, achieved a higher accuracy rate, averaging 99.30%, reaching 97% sensitivity, 99.60% specificity, and 97.87% precision. Future research should focus on further exploring and refining DL methods in the context of HRV analysis to improve SCD prediction.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…