• World Neurosurg · Nov 2023

    Biomechanical Study of Minimal Invasive Non-Fusion Surgery for the Treatment of Disc Herniation Associated with Adjacent Segment Disease: A Finite Element Analysis.

    • Kai-Hua Li, Zhi-Guo Li, Hui-Ling Xiong, Xiao-Ning Liu, and Xin-Long Ma.
    • Graduate School of Tianjin Medical University, Tianjin, People's Republic of China; Institute of Orthopedics, Fengfeng General Hospital of North China Medical & Health Group, Handan, Hebei, People's Republic of China.
    • World Neurosurg. 2023 Nov 1; 179: e305e313e305-e313.

    ObjectiveWe explored the biomechanical changes of 2 conventional minimally invasive nonfusion surgical methods for treating disc herniation in adjacent segment disease using 3-dimensional finite element analysis.MethodsA model comprising L3 to the sacrum was validated and used to establish an L4-L5 fusion model, and an adjacent segment disease (ASD) model was developed by modifying the material properties of the intervertebral discs. The ASD model was used to simulate 2 conventional minimally invasive nonfusion surgical methods, which resulted in the creation of 2 postoperative models (M1 and M2). The range of motion and the equivalent stress for each model were recorded under 6 different working conditions. The data are descriptive and were analyzed comparatively under a normal load.ResultsCompared with the ASD group, the range of motion of the adjacent segment in the M1 and M2 groups remained unaffected. However, significant Von-Mises stress changes were found in the annulus fibrosus and nucleus pulposus (NP), especially during extension, ipsilateral bending, and rotation. Stress in the NP also shifted toward the surgical incision in the annulus fibrosus during these movements. The maximum Von-Mises stress in the NP of the cephalic segment increased more than did that of the caudal segment.ConclusionsMinimal nonfusion surgery for ASD might not affect adjacent segment stability significantly. Nonetheless, it can lead to segmental degeneration deterioration and postoperative recurrence. The cephalic segment is affected more than the caudal segment. Therefore, consideration of disc degeneration and appropriate selection of surgical methods for ASD are crucial.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.