• Brain research · Sep 2014

    In-vivo detection of inflammation and neurodegeneration in the chronic phase after permanent embolic stroke in rats.

    • Maureen Walberer, Sabine U Jantzen, Heiko Backes, Maria A Rueger, Meike H Keuters, Bernd Neumaier, Mathias Hoehn, Gereon R Fink, Rudolf Graf, and Michael Schroeter.
    • Department of Neurology, University Hospital, Kerpener Str. 62, 50924 Cologne, Germany; Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany.
    • Brain Res. 2014 Sep 18;1581:80-8.

    AbstractNeuroinflammation with microglia activation (MA) constitutes a key tissue response in acute stroke. Until now, its course in the chronic stage is less well defined. Here, we investigated (i) neuroinflammation in the chronic stage of a rat model of embolic stroke (n=6), and (ii) whether this process can be visualized in vivo by multimodal imaging using Magnetic Resonance Imaging (MRI) and Positron-Emission-Tomography (PET). Imaging data were verified using histology and immunohistochemistry. Repetitive PET studies until week 6 after stroke reveal poststroke inflammation as a dynamic process that involved the infarct, the surrounding tissue and secondary degenerating areas in a complex fashion. At the end, 7 months after stroke, neuroinflammation had almost completely vanished at the lesion side. In contrast, remote from the primarily infarcted areas, a marked T2(*)- hypointensity was detected in the ipsilateral thalamus. In the corresponding area, [(11)C]PK11195-PET detected microglia activation. Immunohistochemistry confirmed activated microglia in the ipsilateral thalamus with signs of extensive phagocytosis and iron deposition around plaque-like amyloid deposition. Neuronal staining (NeuN) revealed pronounced neuronal loss as an endpoint of neurodegeneration in these areas. In conclusion, the data demonstrate not only ongoing thalamic neuroinflammation but also marked neurodegeneration remote from the lesion site in the chronic phase after stroke in rats. Both, neuroinflammation and neurodegeneration were accessible to (immuno-) histochemical methods as well as to in vivo methods using [(11)C]PK11195-PET and T2(*)-weighted MRI. Although the functional roles of these dynamic processes remain to be elucidated, ongoing destruction of neuronal tissue is conceivable. Its inhibition using anti-inflammatory substances may be beneficial in chronic post-stroke conditions, while multimodal imaging can be used to evaluate putative therapeutic effects in vivo.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…