• J. Thorac. Cardiovasc. Surg. · Sep 1995

    Protection against injury during ischemia and reperfusion by acadesine derivatives GP-1-468 and GP-1-668. Studies in the transplanted rat heart.

    • M Galiñanes, X Zhai, D Bullough, K M Mullane, and D J Hearse.
    • Rayne Institute, St. Thomas' Hospital, London, United Kingdom.
    • J. Thorac. Cardiovasc. Surg. 1995 Sep 1;110(3):752-61.

    BackgroundAcadesine (AICAr: 5-amino-4-imidazole carboxamide riboside) has been shown to afford sustained protection against injury during ischemia and reperfusion. The present studies used the heterotopically transplanted rat heart to assess the protective properties of two new acadesine analogs: GP-1-468 and GP-1-668.Methods And ResultsHearts were excised, arrested with a 2-minute infusion of cardioplegic solution, and subjected to 4 hours of global ischemia (20 degrees C) with cardioplegic reinfusion for 2 minutes every 30 minutes. The hearts were then transplanted (1 hour of additional ischemia) into the abdomens of recipient rats and reperfused in situ for 30 minutes or 24 hours. The hearts were then excised, perfused aerobically for 20 minutes, and contractile function was assessed. GP-1-468 or GP-1-668 was administered to donor rats (20 mg/kg intravenously, 30 minutes before excision). They were also added to the cardioplegic solution (10 mumol/L for GP-1-468, 5 mumol/L for GP-1-343, the active metabolite of GP-1-668) and were also given to recipient rats (20 mg/kg intravenously, 30 minutes before transplantation, so that the drugs were present during reperfusion). Nine groups of hearts were studied. Three groups of studies were carried out (n = 24 transplants for each group). The first group of hearts was reperfused for 30 minutes, the second group was reperfused for 24 hours, and the third group was transplanted but not reperfused; instead, they were frozen at the end of 5 hours of ischemia and taken for metabolite analysis. Within each group were three subgroups (n = 8 per group) receiving GP-1-468, GP-1-668, or saline solution. In the 30-minute reperfusion group the recoveries of left ventricular developed pressure were 88 +/- 4, 87 +/- 7, and 50 +/- 9 mm Hg, respectively (p < 0.05 versus saline-treated controls); left ventricular volumes (recorded at 12 mm Hg) were 112 +/- 20, 132 +/- 28, and 41 +/- 9 microliters, respectively (p < 0.05 versus saline-treated controls), and coronary flows were 13.1 +/- 0.7, 13.4 +/- 1.0, and 9.9 +/- 0.5 ml/min, respectively (p < 0.05 versus saline-treated controls). In addition to improving functional recovery, the two analogs increased the tissue content of adenosine at the end of the ischemic period (5.4 +/- 0.6 and 7.3 +/- 0.5 mumol/gm dry weight, respectively, versus 2.7 +/- 0.4 mumol/gm dry weight in the saline-treated controls; p < 0.05); however, they did not influence adenosine triphosphate or its catabolites. In the 24-hour reperfusion group the corresponding values were 77 +/- 6 and 88 +/- 6 versus 35 +/- 4 mm Hg for left ventricular developed pressure (p < 0.05), 111 +/- 9 and 121 +/- 11 versus 41 +/- 8 microliters for left ventricular volume (p < 0.05), and 13.7 +/- 0.7 and 13.0 +/- 0.6 versus 11.7 +/- 0.7 ml/min for coronary flow (no significant difference). Thus both analogs afforded an early and comparable degree of protection of contractile function that was sustained even after 24 hours of reperfusion.ConclusionsBoth GP-1-468 and GP-1-668 increase the rate and extent of early postischemic recovery, and this protection is sustained for at least 24 hours. These beneficial actions were associated with an increase of the tissue content of adenosine during ischemia, but they appeared to be independent of the status of the high-energy metabolism.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…