-
- Don Walsh, Ciara Cunning, Graham Lee, John Boylan, and Paul McLoughlin.
- Department of Clinical Biochemistry, Mater Misericordiae University Hospital, Dublin, Ireland.
- Shock. 2023 Oct 1; 60 (4): 487495487-495.
AbstractNormal shear stress is essential for the normal structure and functions of the microcirculation. Hemorrhagic shock leads to reduced shear stress due to reduced tissue perfusion. Although essential for the urgent restoration of cardiac output and systemic blood pressure, large volume resuscitation with currently available solutions causes hemodilution, further reducing endothelial shear stress. In this narrative review, we consider how the use of currently available resuscitation solutions results in persistent reduction in endothelial shear stress, despite successfully increasing cardiac output and systemic blood pressure. We consider how this reduced shear stress causes (1) a failure to restore normal vasomotor function and normal tissue perfusion thus leading to persistent tissue hypoxia and (2) increased microvascular endothelial permeability resulting in edema formation and impaired organ function. We discuss the need for clinical research into resuscitation strategies and solutions that aim to quickly restore endothelial shear stress in the microcirculation to normal.Copyright © 2023 by the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.