-
- Mert Karabacak and Konstantinos Margetis.
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA.
- Eur Spine J. 2023 Nov 1; 32 (11): 385738673857-3867.
PurposeBy predicting short-term postoperative outcomes before surgery, patients undergoing cervical laminoplasty (CLP) surgery could benefit from more accurate patient care strategies that could reduce the likelihood of adverse outcomes. With this study, we developed a series of machine learning (ML) models for predicting short-term postoperative outcomes and integrated them into an open-source online application.MethodsNational surgical quality improvement program database was utilized to identify individuals who have undergone CLP surgery. The investigated outcomes were prolonged length of stay (LOS), non-home discharges, 30-day readmissions, unplanned reoperations, and major complications. ML models were developed and implemented on a website to predict these three outcomes.ResultsA total of 1740 patients that underwent CLP were included in the analysis. Performance evaluation indicated that the top-performing models for each outcome were the models built with TabPFN and LightGBM algorithms. The TabPFN models yielded AUROCs of 0.830, 0.847, and 0.858 in predicting non-home discharges, unplanned reoperations, and major complications, respectively. The LightGBM models yielded AUROCs of 0.812 and 0.817 in predicting prolonged LOS, and 30-day readmissions, respectively.ConclusionThe potential of ML approaches to predict postoperative outcomes following spine surgery is significant. As the volume of data in spine surgery continues to increase, the development of predictive models as clinically relevant decision-making tools could significantly improve risk assessment and prognosis. Here, we present an accessible predictive model for predicting short-term postoperative outcomes following CLP intended to achieve the stated objectives.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.