• J Clin Monit Comput · Feb 2024

    Improving case duration accuracy of orthopedic surgery using bidirectional encoder representations from Transformers (BERT) on Radiology Reports.

    • William Zhong, Phil Y Yao, Sri Harsha Boppana, Fernanda V Pacheco, Brenton S Alexander, Sierra Simpson, and Rodney A Gabriel.
    • Division of Perioperative Informatics, Department of Anesthesiology, University of California, La Jolla, San Diego, CA, USA.
    • J Clin Monit Comput. 2024 Feb 1; 38 (1): 221228221-228.

    PurposeA major source of inefficiency in the operating room is the mismatch between scheduled versus actual surgical time. The purpose of this study was to demonstrate a proof-of-concept study for predicting case duration by applying natural language processing (NLP) and machine learning that interpret radiology reports for patients undergoing radius fracture repair.MethodsLogistic regression, random forest, and feedforward neural networks were tested without NLP and with bag-of-words. Another NLP method tested used feedforward neural networks and Bidirectional Encoder Representations from Transformers specifically pre-trained on clinical notes (ClinicalBERT). A total of 201 cases were included. The data were split into 70% training and 30% test sets. The average root mean squared error (RMSE) were calculated (and 95% confidence interval [CI]) from 10-fold cross-validation on the training set. The models were then tested on the test set to determine proportion of times surgical cases would have scheduled accurately if ClinicalBERT was implemented versus historic averages.ResultsThe average RMSE was lowest using feedforward neural networks using outputs from ClinicalBERT (25.6 min, 95% CI: 21.5-29.7), which was significantly (P < 0.001) lower than the baseline model (39.3 min, 95% CI: 30.9-47.7). Using the feedforward neural network and ClinicalBERT on the test set, the percentage of accurately predicted cases, which was defined by the actual surgical duration within 15% of the predicted surgical duration, increased from 26.8 to 58.9% (P < 0.001).ConclusionThis proof-of-concept study demonstrated the successful application of NLP and machine leaning to extract features from unstructured clinical data resulting in improved prediction accuracy for surgical case duration.© 2023. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…