-
Observational Study
Predictive value of texture analysis on lumbar MRI in patients with chronic low back pain.
- Vicente-Jose Climent-Peris, Luís Martí-Bonmatí, Alejandro Rodríguez-Ortega, and Julio Doménech-Fernández.
- Orthopaedic Surgery Department, Hospital Mare de Déu Dels Lliris, Alcoi (Alicante), Spain. vicentcp@gmail.com.
- Eur Spine J. 2023 Dec 1; 32 (12): 442844364428-4436.
PurposeThe aim of this study was to determine whether MRI texture analysis could predict the prognosis of patients with non-specific chronic low back pain.MethodsA prospective observational study was conducted on 100 patients with non-specific chronic low back pain, who underwent a conventional MRI, followed by rehabilitation treatment, and revisited after 6 months. Sociodemographic variables, numeric pain scale (NPS) value, and the degree of disability as measured by the Roland-Morris disability questionnaire (RMDQ), were collected. The MRI analysis included segmentation of regions of interest (vertebral endplates and intervertebral disks from L3-L4 to L5-S1, paravertebral musculature at the L4-L5 space) to extract texture variables (PyRadiomics software). The classification random forest algorithm was applied to identify individuals who would improve less than 30% in the NPS or would score more than 4 in the RMDQ at the end of the follow-up. Sensitivity, specificity, and the area under the ROC curve were calculated.ResultsThe final series included 94 patients. The predictive model for classifying patients whose pain did not improve by 30% or more offered a sensitivity of 0.86, specificity 0.57, and area under the ROC curve 0.71. The predictive model for classifying patients with a RMDQ score 4 or more offered a sensitivity of 0.83, specificity of 0.20, and area under the ROC curve of 0.52.ConclusionThe texture analysis of lumbar MRI could help identify patients who are more likely to improve their non-specific chronic low back pain through rehabilitation programs, allowing a personalized therapeutic plan to be established.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.