• Injury · Nov 2023

    Biomechanical performance of talon cannulated compression device in pauwels type III fractures: a comparative study.

    • Hayri Can Taşkent, Kadir Bahadır Alemdaroğlu, Yunus Uslan, Niyazi Ercan, and Teyfik Demir.
    • SBÜ Ankara Training & Research Hospital Department of Orthopaedics and Traumatology, Turkey.
    • Injury. 2023 Nov 1; 54 (11): 111018111018.

    IntroductionPauwels Type III fractures are unstable and frequently treated with cannulated screws (CS) or dynamic hip screws (DHS). The newly developed talon-cannulated compression devices (TCCD) have the potential to provide rotational stability, mainly through their talon. The study investigates whether TCCD has mechanical advantages over conventional screws or can be as stable as DHS in a reverse triangle configuration for an unstable femoral neck fracture.Material And MethodsAfter creating a standard Pauwels Type III unstable femoral neck fracture in 36 synthetic femur bones in cortical/hard cancellous bone density, 18 were reserved for dynamic-static tests, and 18 were used for torsional tests. Each group containing 18 synthetic bones was divided into three groups to apply three different fixation materials (CS, DHS, and TCCD), with six models in each group. The displacement amounts after dynamic-static tests were measured using the AutoCAD program according to the reference measurement criteria. During the dynamic tests, a series of photographs were taken. During the static tests, the beginning and post-test photographs were taken. Finally, torsional tests were performed until implant failure occurred in the synthetic femur.ResultsIn static axial loading tests, TCDD was found to be statistically superior to conventional CS in AL-BL distance (p = 0,014) and CL distance (p = 0,013) measurements, and there was no significant difference between the other groups. There was no significant difference between all groups in dynamic axial compression tests in any points of interest. In torsional tests, TCCD outperformed cannulated screws in stiffness (p = 0,001) and maximum torque (p = 0,001) categories, and they provided statistically significant superiority to DHS in yield torque (p<0,001) category.ConclusionsBiomechanically, TCCD predominates conventional cannulated screws in femoral neck fractures. TCCD also has superior torsional properties than DHS in the yield torque category. Therefore, TCCD could be the implant of choice for unstable femoral neck fractures.Copyright © 2023 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.